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1 Sample Data

Figure 1: Sample images from (a) SSP-3D [13] and (b) LargeSize.

Figure 1 shows sample images from SSP-3D dataset [13] and our LargeSize dataset.
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2 Problems with EFT

Figure 2: The comparison of mesh fitting results with EFT [4] and our proposed OMR.

Figure 2 shows some fitting results with EFT [4], which illustrate the problmes men-
tioned in Section 3.2, i.e. the risk of overfitting the 2D cost function and biased estimation
for obese data. However, our proposed OMR addresses these limitations.

3 Implementation Details

3.1 Mesh Vertices to Segmentation Masks
Given the mesh vertices, we use a differentiable renderer SoftRas [9], which fuses the prob-
abilistic contributions of all mesh triangles with respect to the rendered pixels, and a prede-
fined texture map to generate the binary body part segmentation masks SSS ∈RH×W×D, where
H, W and D are the height, width and the number of body part, respectively.

3.2 Loss Items
We use the Geman-McClure error function [2] to measure the 2D re-projection loss L2D for
both P-iteration and Q-iteration steps:

L2D(x̂,x) =
σ2 ∗ (x̂−x)2

σ2 +(x̂−x)2 , (1)

where σ = 100, and x̂ and x are the predicted 2D joints and their corresponding ground truth.
The pose prior Lθ (θ) is implemented following prior work [11] as:

Lθ (θ) = ||Z(θ)||22, (2)

where Z(θ) is the latent representation learned by a variational autoencoder.
The 2D shape loss Lshape is inspired by the intersection-over-union (IoU) loss used in the

segmentation task, e.g., [12]. Given the estimated binary mask Ŝi and the ground truth mask
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Si for part i, their intersection Ii and union Ui can be computed by

Ii =∑
m,n

Ŝm,n
i ·Sm,n

i , (3)

Ui =∑
m,n

Ŝm,n
i +Sm,n

i − Ŝm,n
i ·Sm,n

i , (4)

where (m,n) is the pixel position of the mask. Therefore, our 2D shape loss can be formu-
lated as Lshape = ∑

6
i=1 1− Ii/Ui to sum over all 6 body parts, which gives Eqn. 3 in the main

paper.

3.3 Optimization
We use the Adam optimizer [6] for both P-iteration and Q-iteration steps. The learning rate
for the Q-iteration step is set to 1e-3, whereas the learning rate of P-iteration step is set to
1e-6. The number of iterations for each single P-iteration and Q-iteration steps is 20. All our
implementation is in PyTorch [10].

3.4 SSP-3D [13] Validation Set
To select data with extreme shape parameters, we measure the PVE-T between the mean
shape parameters and those of each sample in SSP-3D. The data whose PVE-T is no less
than 22.5 mm will be included into the validation set.

4 Additional Experimental Results

4.1 Quantitative Results
Table 1 shows results on the SSP-3D dataset where we use HKMR [3] as the base model.
Similarly, We can observe the proposed Lshape consistently reduces both PA-MPJPE and
PVE-T errors across all the methods, and the proposed OMR outperforms both SMPLifty
[1] and EFT [4]. Note that these results correspond to the same experiment as Table 1 in the
main paper, where we showed results with SPIN [7].

SSP-3D MPJPE-PA (mm) PVE-T (mm)

HKMR 57.53 34.54

SMPLify w/o Lshape 55.02 28.92
SMPLify+Lshape 53.31 27.20

EFT w/o Lshape 55.29 30.17
EFT+Lshape 54.88 29.59

OMR w/o Lshape 52.67 29.20
OMR+Lshape 49.77 18.72

SSP-3D (PVE-T) Torso Legs Arms Head

HKMR 52.10 25.04 36.93 31.19

SMPLify w/o Lshape 47.05 19.41 32.50 23.70
SMPLify+Lshape 43.99 18.68 30.30 22.02

EFT w/o Lshape 49.10 20.01 34.22 24.86
EFT+Lshape 48.17 19.59 33.12 24.94

OMR w/o Lshape 47.68 19.25 32.30 25.00
OMR+Lshape 24.46 16.04 19.84 16.38

Table 1: SMPLify [1] vs. EFT [4] vs. proposed OMR on SSP-3D using HKMR [3] as the
base model. These results correspond to the same experiment as Table 1 in the main paper,
where we showed results with SPIN [7].

Table 2 shows results on Human3.6M dataset for the generalized model fitting evaluation,
where CMR [8] and HKMR [3] are the base models. The proposed OMR is still able to have

Citation
Citation
{Kingma and Ba} 2014

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, and Chintala} 2019

Citation
Citation
{Sengupta, Budvytis, and Cipolla} 2020

Citation
Citation
{Georgakis, Li, Karanam, Chen, Kosecka, and Wu} 2020

Citation
Citation
{Bogo, Kanazawa, Lassner, Gehler, Romero, and Black} 2016

Citation
Citation
{Joo, Neverova, and Vedaldi} 2020

Citation
Citation
{Kolotouros, Pavlakos, Black, and Daniilidis} 2019{}

Citation
Citation
{Bogo, Kanazawa, Lassner, Gehler, Romero, and Black} 2016

Citation
Citation
{Joo, Neverova, and Vedaldi} 2020

Citation
Citation
{Georgakis, Li, Karanam, Chen, Kosecka, and Wu} 2020

Citation
Citation
{Kolotouros, Pavlakos, Black, and Daniilidis} 2019{}

Citation
Citation
{Kolotouros, Pavlakos, and Daniilidis} 2019{}

Citation
Citation
{Georgakis, Li, Karanam, Chen, Kosecka, and Wu} 2020



4 LI, KARANAM, ZHENG, CHEN, WU: TOWARDS UNBIASED HUMAN MESH RECOVERY

a steady decrease in both MPJPE and PA-MPJPE, which reaches to the lowest error. Note
that these results correspond to the same experiment as Table 2 in the main paper, where we
showed results with SPIN [7].

Human3.6M MPJPE PA-MPJPE

CMR [8] 76.04 50.46

SMPLify - 20 84.44 57.41
SMPLify - 100 101.92 63.38

EFT - 20 70.32 47.43
EFT - 100 74.62 46.77

OMR (1P1Q) 70.03 47.10
OMR (5P4Q) 68.89 44.56

Human3.6M MPJPE PA-MPJPE

HKMR [3] 65.03 46.53

SMPLify - 20 69.57 44.61
SMPLify - 100 81.66 50.18

EFT - 20 58.41 39.53
EFT - 100 66.62 41.81

OMR (1P1Q) 59.15 39.25
OMR (5P4Q) 56.97 38.60

Table 2: SMPLify vs. EFT vs. OMR on Human3.6M using the CMR and HKMR base
models. All numbers in mm. These results correspond to the same experiment as Table 2 in
the main paper, where we showed results with SPIN [7].

SSP-3D MPJPE PA-MPJPE PVE-T mIoU

SPIN [7] 92.03 53.57 35.68 0.6570
SPIN - SMPLify 106.50 59.45 32.65 0.6889

SPIN - EFT 88.60 55.14 33.05 0.6823
SPIN - OMR 84.48 50.16 27.36 0.7088

HKMR [3] 98.02 57.53 34.54 0.6647
HKMR - SMPLify 107.55 60.63 32.62 0.6799

HKMR - EFT 92.53 56.31 32.59 0.6825
HKMR - OMR 88.81 52.43 27.23 0.7028

Human3.6M Protocol #1 Protocol #2
MPJPE PA-MPJPE MPJPE PA-MPJPE

SPIN [7] 65.60 44.1 62.23 41.1
SPIN - SMPLify 65.12 45.2 61.39 42.6

SPIN - EFT 63.40 44.3 60.00 41.5
SPIN - OMR 61.95 43.7 58.51 41.0

HKMR [3] 64.02 45.9 59.62 43.2
HKMR - SMPLify 65.91 47.3 62.22 44.4

HKMR - EFT 64.04 46.3 62.22 43.4
HKMR - OMR 62.70 45.6 59.36 42.9

Table 3: Improving baseline models by retraining with annotations generated by our method:
Results on SSP-3D and Human3.6M with SPIN and HKMR as base models. These results
correspond to the same experiment as Table 3 in the main paper, where we showed a subset
of these results with SPIN [7] and HKMR [3].

Tables 3 and 4 shows the performance improvement obtained by using OMR-generated
parameters for the training of HMR [5], CMR [8], SPIN [7], and HKMR [3]. Note that these
results correspond to the same experiment as Table 3 in the main paper, where we showed a
subset of these results with SPIN [7] and HKMR [3] as the base models.

Finally, in Table 5, we show results of retraining HMR, CMR, SPIN, and HKMR on our
internal LargeSize data, where one can note substantial performance improvements with the
proposed OMR.

4.2 Qualitative Results

In Figure 3, we show some representative mesh fitting results using the proposed OMR on
both the generic standard benchmark dataset and our LargeSize dataset. Figure 4 and 5 show
the improved mesh estimations with HKMR [3] and SPIN [7] on 3DPW [14] and LargeSize
when compared to their corresponding baseline versions.
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SSP-3D MPJPE PA-MPJPE PVE-T mIoU

HMR [5] 102.34 67.91 31.41 0.6477
HMR - OMR 99.54 59.83 30.87 0.6599

CMR [8] 135.51 67.11 730.62 0.6651
CMR - OMR 93.61 56.19 30.08 0.6862

Human3.6M Protocol #1 Protocol #2
MPJPE PA-MPJPE MPJPE PA-MPJPE

HMR [5] 87.97 58.1 88.0 56.8
HMR - OMR 77.73 56.1 74.2 53.8

CMR [8] 74.7 51.9 71.9 50.1
CMR - OMR 67.0 47.9 64.7 45.7

Table 4: Improving baseline models by retraining with annotations generated by our method:
Results on SSP-3D and Human3.6M with HMR and CMR as base models. These results
correspond to the same experiment as Table 3 in the main paper, where we showed results
with SPIN [7] and HKMR [3].

FB Seg. Part Seg. PVE-Tacc. f1 acc. f1

HMR [5] 93.89 89.35 91.97 71.37 36.87
HMR - OMR 94.71 91.01 92.99 76.21 20.24

CMR [8] 93.93 89.84 91.83 72.26 24.93
CMR - OMR 94.45 90.42 92.90 76.30 22.05

SPIN [7] 93.76 89.01 92.20 73.25 29.24
SPIN - SMPLify 94.93 91.37 93.41 77.94 20.42

SPIN - EFT 94.73 90.89 93.27 77.91 21.55
SPIN - OMR 95.78 93.13 94.32 81.01 15.20

HKMR [3] 94.42 90.35 92.82 75.77 30.73
HKMR - SMPLify 94.76 90.98 93.23 76.97 20.30

HKMR - EFT 94.57 90.55 93.10 76.92 21.67
HKMR - OMR 95.82 93.00 94.29 80.57 13.98

Table 5: Improving baseline models by retraining with annotations generated by our method
on our LargeSize dataset.
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Figure 3: OMR mesh fits on (a) non-obese standard benchmark data and (b) LargeSize data.

Figure 4: Mesh estimation results on 3DPW [14] of HKMR and SPIN before and after
retraining with OMR-generated parameters.
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Figure 5: Mesh estimation results on LargeSize of HKMR and SPIN before and after retrain-
ing with OMR-generated parameters.
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