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A Instantiations Architecture
In this work, our TEAM is instantiated with ResNet architecture to formulate TEAM-Net.
I-frame pathway utilizes ResNet-50 as the backbone while MV and residual use ResNet-
18 as the backbone. Details of the TEAM-Net architecture and feature dimension at each
stage can be referred in Figure 1 and Table 2. As mentioned in the main paper, the input is
sampled based on the GOP. In Figure 1, T GOPs are sampled from a video, which results in
T I-frames and T P-frames (MVs and residuals) to be fed to the network.
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Figure 1: An example instantiation of the TEAM-Net. The dimensions of features at each
stage are denoted as {T ⇥C⇥H ⇥W}. The I-frame path ultilizes ResNet-50 while MV and
residual paths use ResNet-18.

B Instantiated with TSM
Table 1 shows the TEAM-Net using TSM as the backbone. It can be seen that TEAM is able
to improve the TSM baseline consistently. Together with TSN experiment demonstrated in
the main paper, these results show that TEAM-Net is well-generalized to different backbones
and datasets.

Table 1: TEAM-Net consistently improves the TSM baseline for three datasets. All methods
use 8 frames for fair comparison.

Model Kinetics-400 UCF-101 HMDB-51

TSM 71.8 94.5 70.7
TEAM-Net 73.0 ("1.2) 95.2 ("0.7) 74.3 ("3.0)
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Table 2: TEAM-Net is instantiated with the ResNet architecture. I-frame pathway utilizes
ResNet-50 as the backbone while MV and residual (R) both utilize ResNet-18 as the back-
bone.

Stage I-frame MV/Residual Output size

Input —— I-frame: T ⇥224⇥224
MV/R: T ⇥224⇥224

conv1 1⇥7⇥7, 64, stride 1, 2, 2 I-frame: T ⇥112⇥112
MV/R: T ⇥112⇥112

pool1 1⇥3⇥3, max, stride 1, 2, 2 I-frame: T ⇥56⇥56
MV/R: T ⇥56⇥56

TEAM I-frame: T ⇥56⇥56
MV/R: T ⇥56⇥56

res2

" 1⇥1⇥1,64
1⇥3⇥3,64
1⇥1⇥1,256

#
⇥3

"
1⇥3⇥3,64
1⇥3⇥3,64

#
⇥2 I-frame: T ⇥56⇥56

MV/R: T ⇥56⇥56

TEAM I-frame: T ⇥56⇥56
MV/R: T ⇥56⇥56

res3

" 1⇥1⇥1,128
1⇥3⇥3,128
1⇥1⇥1,512

#
⇥4

"
1⇥3⇥3,128
1⇥3⇥3,128

#
⇥2 I-frame: T ⇥28⇥28

MV/R: T ⇥28⇥28

TEAM I-frame: T ⇥28⇥28
MV/R: T ⇥28⇥28

res4

" 1⇥1⇥1,256
1⇥3⇥3,256
1⇥1⇥1,512

#
⇥6

"
1⇥3⇥3,256
1⇥3⇥3,256

#
⇥2 I-frame: T ⇥14⇥14

MV/R: T ⇥14⇥14

TEAM I-frame: T ⇥14⇥14
MV/R: T ⇥28⇥28

res5

" 1⇥1⇥1,512
1⇥3⇥3,512

1⇥1⇥1,2048

#
⇥3

"
1⇥3⇥3,512
1⇥3⇥3,512

#
⇥2 I-frame: T ⇥7⇥7

MV/R: T ⇥7⇥7

global average pool, FC T ⇥CLS

temporal average CLS
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C Class-specific Visualization
As mentioned in the main paper, the channel fusion focuses on ‘what’ by taking global
spatial information into account while the spatial fusion focuses on ‘where’ by looking at the
local spatial content. Figure 2 shows that the channel fusion fails in local action reasoning.
Figure 3 shows that the spatial fusion is sensitive to unrelated local movements.
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Figure 2: Class-specific visualization for channel fusion only, spatial fusion only and our
proposed TEAM module. The channel fusion only reasoning is inaccurate in this case.
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Figure 3: Class-specific visualization for channel fusion only, spatial fusion only and our
proposed TEAM module. The spatial fusion only is sensitive to unrelated movements.


