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In this supplementary material, we provide more experimental results, ablation studies,
and visualizations to evaluate the performance of our Point3D in a comprehensive manner.

1 Experimental Results
In this section, we closely follow [2, 4] to conduct an error analysis on the frame mAP
in order to better explore our proposed Point3D. Specifically, we investigate five kinds of
action detection errors as described in [2], which are localization errors (EL), classification
errors (EC), time errors (ET), other errors (EO), and missed detection errors (EM). Among
these action detection errors, EL, EC, ET, and EO identify false positive detection and we
follow the calculation of frame mAP and measure the area under the curve when plotting
the percentage of each category at all recall values. On the other hand, EM refers to the
actions that we fail to detect at all. It is computed by measuring the percentage of ground
truth boxes for which there are no correct detections. We report the results for T = 1,7,16
on the JHMDB and UCF101-24 dataset in Figure 1.

From Figure 1, we make the following observations: First, when experimenting with
T = 7 on the JHMDB dataset, we achieve lower EL, EC, EO, and EM than the MOC [4]
by 0.09%, 5.78%, 0.07%, and 0.20%, respectively. Our Point3D outperforms the MOC by
6.14% in terms of frame-mAP. Similar improvements can be seen on the UCF101-24 dataset.
This shows the advantage of our Point3D in spatio-temporal action recognition. Second, with
the increase of T , i.e., the length of the input clip, the frame-mAP increases and all the errors
except ET decreases. This agrees with the common sense that the length of the input clip is
crucial for action recognition. But there is a trade-off between the precision and the speed
using different T s. Third, the increasing gap from T = 1 to T = 7 is insignificant compared
to the increasing magnitude from T = 1 and T = 7. Thus, we set T = 7 in our case for a better
trade-off between the precision and the speed. From the error analysis, we can observe that
our classification error EC (see the blue bar in Figure 1 is still high. Our Point3D sometimes
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Figure 1: Error analysis of our Point3D for T = 1,7,16 on the JHMDB and UCF101-24
dataset. We show frame-mAP and different sources of error.

makes some false positive classifications at initial frames since it is hard to recognize the
action before it happens.

Following previous work [4] closely, we also evaluate the two-stream offline speed of
our Point3D’s on a single Tesla V100 GPU. Point3D reaches a competitive speed of 20
fps compared with existing 2D detectors. In Figure 2, we compare our Point3D with some
current state-of-the-art methods which have reported their speed in the original paper [2, 3, 4,
6, 8, 10, 12]. Point3D achieves the best performance against the existing methods in terms of
video mAP within reasonable runtime. This further confirms the advantages of our Point3D
in tracking action as moving points with 3D-CNNs.
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Figure 2: Runtime comparison with the state-of-the-art methods using video mAP with a
threshold of 0.2 and FPS of frame per second. A high video mAP (in red) and a small FPS
(in blue) indicates a better performance. Results of [6] are omitted as their video mAP is
much lower compared to other methods.

2 Ablation Study
Input of 3D Head. In this ablation study, we explore three types of 3D Head input, including
the raw clip, frame heatmaps and the output from Point Head, as shown in Table 1. Output
from the Point Head achieves better performance against the raw clip and the heatmap alone,
which shows the advantage of the Point Head. Combining two of three input types can
improve the performance further. Especially, using the raw clip and the output from Point
Head achieves the best performance among all input combinations in terms of four video-
mAP metrics. Feeding all three types of input into the 3D Head achieves the best frame-mAP,
which further demonstrate the flexibility of the proposed Point3D architecture.

*These authors contributed equally to this work. †Corresponding author.
© 2021. The copyright of this document resides with its authors.
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Table 1: Exploration study on the input of 3D Head.
Raw Heatmap Point Head Frame-mAP(%) Video-mAP(%)
clip output 0.5 0.2 0.5 0.75 0.5:0.95
X 76.1 87.4 84.5 69.6 58.7

X 77.9 87.9 84.8 69.9 59.1
X 79.2 89.1 86.1 71.5 60.9

X X 78.1 89.0 85.2 70.3 59.4
X X 79.4 89.3 86.2 71.7 61.1

X X 79.5 89.4 86.5 71.8 61.3
X X X 79.6 89.2 86.1 71.5 61.0

3D Head backbone. Furthermore, we explore the design of 3D Head backbone, as shown
in Table 2. Specifically, we employ the 3D backbone with 3D-ResNet with different depths
[9] and with other popular 3D-CNN architectures such as MobileNets [1, 7] and ShuffleNet
[5, 11]. We can observe that the stronger 3D Head backbone we use, better the achieved
results. This further demonstrates the importance of the proposed 3D Head in our Point3D.
Moreover, applying the light-weight backbone in our 3D Head achieves the competitive
performance compared to the MOC [4].

Table 2: Exploration study on the design of 3D Head backbone.
3D backbone FPS Frame-mAP(%) Video-mAP(%)

0.5 0.2 0.5 0.75 0.5:0.95
MobileNetV1 2.0x 31 67.5 72.6 71.8 64.9 53.8
MobileNetV2 2.0x 31 69.1 75.5 73.6 66.8 55.6
ShuffleNetV1 2.0x 30 70.2 77.6 75.8 67.5 56.4
ShuffleNetV2 2.0x 30 70.8 78.9 77.5 68.1 57.6

ResNet-18 27 72.6 80.4 78.5 68.4 58.3
ResNet-50 25 74.5 82.5 80.3 68.7 58.8
ResNet-101 20 77.4 86.5 84.2 69.4 59.8

ResNeXt-101 23 79.2 89.1 86.1 71.5 60.9

Weight of localization and classification loss. In Table 3, we ablate λloc and λcls, two
important parameters in our Point3D to balance the weight of Point Head and 3D Head in
the overall loss Loverall . We see that the performance gap among different settings are small,
which further shows the robustness of our Point3D to the weight hyper-parameters. In our
case, we set λ1 = 10 and λ2 = 1 to achieve the best performance.

Table 3: Exploration study on λloc and λcls.
λloc λcls

Frame-mAP(%) Video-mAP(%)
0.5 0.2 0.5 0.75 0.5:0.95

1 1 79.2 89.1 86.1 71.5 60.9
1 5 79.3 89.2 86.2 71.6 61.1
1 10 79.5 89.4 86.4 71.8 61.4
1 15 79.1 88.9 85.9 71.3 60.8
5 1 79.7 89.5 86.4 71.7 61.3

10 1 79.9 89.8 86.8 71.9 61.5
15 1 79.6 89.4 86.3 71.6 61.2
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3 Visualizations

We provide more qualitative examples of action recognition on the JHMDB and UCF101-24
datasets to demenstrate the effectiveness of our proposed Point3D. In general, our Point3D
architecture exhibits satisfactory performance at localizing and classifying actions in videos.
As can be seen in the first row of Figure 3, the heatmaps generated from our Knot-Point
(KP) detector track spatial and temporal changes of the action from frame to frame, without
needing any anchor boxes. For true positive examples, the actions are correctly classified and
the bounding boxes predicted from Point3D are nearly identical to the ground truth bounding
boxes. For false positive examples, our results show even though the action is misclassified,
the localization result is still robust. We provide more visualization examples using videos
in JHMDB and UCF101-24 in Figure 4 and Figure 5, respectively.

t1 t2 t3 t4 t5

Figure 3: Visualization results of how our Point3D conducts action recognition and some
examples from JHMDB and UCF101-24. The first row denotes the heatmaps generated
from our KP detector, tracking spatial and temporal changes of the action from frame to
frame. The second, third, and fourth rows show examples of true positive detections. The last
row shows an false positive detection example that the action “stand up" is misclassified into
“sit" but the localization of this action is still robust. The blue bounding boxes are ground
truths while the red and green boxes are true and false positive detections, respectively.
Zoom in for a better view.

4 Codes to replicate the experiments

We attach the codes to replicate our experiments and the usage of Point3D as part of supple-
mentary material.
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Figure 4: Visualization results of examples from JHMDB. The blue bounding boxes are
ground truths while the red are true positive detections, respectively. The actions from top to
bottom are “run”, “pullup”, “brush hair”, “catch”, “wave”, “pour”, “kick ball”, and “swing
baseball”. Zoom in for a better view.
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Figure 5: Visualization results of examples from UCF101-24. The blue bounding boxes
are ground truths while the red are true positive detections, respectively. The actions from
top to bottom are “Biking”, “Diving”, “Fencing”, “Horse Riding”, “Long Jump”, “Soccer
Juggling”, “Floor Gymnastics”, and “Skiing”. Zoom in for a better view.
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