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1 Appendix

1.1 Architecture Details

For all results and ablations, we keep the output size of our network as 8192 points, where
the global decoder D, generates 4096 points and the local decoder D, generates 512 points
for each region, to make an overall size of 4096 points across all local regions. Similarly,
the input size is kept consistent for all the ablations; that is, the input size is 3096 and 387
for global encoder Ej, and local encoder E; respectively. Each region in X is dropped with
a probability of removal of 20% and the resulting synthetically occluded point cloud X is
passed to the global encoder E,. In parallel, the input partial point cloud is subdivided into
8 regions along the axial planes of the canonical frame. Each region not artificially removed
or marked as missing is then independently encoded using the local encoder, E;,. When
encoding each region of the input cloud, regions that are marked as missing based on the
threshold number of points are replaced with zeros equal to the threshold. In our method, we
set this threshold as 4. We allow a small overlap of 0.02 cm between neighboring regions
for the ShapeNet dataset and 0.02m for the KITTI dataset. The architecture of local encoder
E, and global decoder D, are similar to the PCN [7]. For local encoder E; and local decoder
Dy, we use the architecture of PCN [7], but reduce the number of hidden units to 1/8th of
the original number. We use Adam optimizer with a learning rate of 1 x 10~* and train our
network for 400K iterations.

1.2 Data preparation

Shapenet: We obtain a point cloud from the RGB-D data by backprojecting 2.5D depth
images to 3D similar to Gu et al. [3]. In contrast to DPC [4], we do not use the color in-
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formation. The centers of the oriented clouds are then shifted to the origin before passing
it to our shape completion network. Specifically, we use the 3D partial shape classification
branch of IT-net pre-trained on ModelNet40 to generate the pose transformations, as it does
not require the ground-truth pose annotations for training. Since our method does not re-
quire perfect pose alignment, using IT-Net pretrained on ModelNet40 instead of ShapeNet
is sufficient for our purpose, as it represents an off-the-shelf canonical frame estimator for
our model classes. We refer the reader to IT-Net [6] for details on this pose canonicalization
method.

Originally, the ShapeNet [2] dataset has 5 views. When training on N views, we only
consider a fixed set of N random views, which is chosen at the beginning of training; the
network is only trained on these N views and the other views of an object are discarded.

Semantic KITTI: At training time, we subdivide the observations of a single instance
into groups of 20 sequential observations and randomly sample a set of four views for multi-
view training. When evaluating accuracy on this dataset, all 20 frames are combined using
ground truth odometry to form the ground truth shape of each instance. This merged cloud is
only used for evaluation and is not present during training. At inference time, only a single
view is used.

1.3 Ablation Studies

In this section, we present a more exhaustive ablation study focusing on the number of views,
architecture changes, number of input points used for training and mention the details of the
ablation of densification of input point clouds for the KITTI dataset.

1.3.1 Number of views

We evaluate the sensitivity of our method to the number of views available at training time in
Supplementary Figure 1. We show the results both with and without inpainting in and
red lines respectively. It can be observed that our model is able to outperform the baseline
with 2 views and 3 views, even though the baseline Gu et al. [3] is trained with 4 views. This
demonstrates that our method is able to take advantage of a reduced number of views, due to
our use of inpainting. We also show the qualitative results with varying numbers of training
views in the Supplementary Figure 2; as can be seen, the results of 2 views and 3 views are
qualitatively very similar to the results with 4 views.

1.3.2 Architecture Changes

Global and Local Encoders and Decoders We analyze whether to use both global and
local encoders and decoders in our network. The results can be found in Supplementary
Table 1. It can be observed that a combination of global and local encoders and decoders
gives the best performance among all the possible combinations.

Number of levels In addition to the two levels in our parallel model (global and local),
we experiment with adding another branch where the partial point cloud is partitioned into
3 x 3 x 3 regions. For this branch, we use an independent local encoder and decoder. The
input size of a region to the encoder is taken as 115 points (to maintain a total input size of
3096) and the size of the predicted point cloud is 152 points for each region (to maintain
a total output size of 4096 for the local decoder). For computing the loss, we divide the
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original input (before dropping points) into regions and subsample the points to have at most
304 points in each region. The results are in Supplementary Table 3. We notice that further
partitioning of the partial point cloud and the additional branch do not give a significant
improvement in the performance.

1.3.3 Number of input points

We evaluate the effect of the number of points in the point cloud on the performance of our
method. To test this, we create new versions of the test set with varying numbers of points;
for each object, we resample the point cloud (without replacement) from the input point
cloud with a varying number of sampled points. We evaluate the Chamfer Distance metric
as a function of the number of points in the input point cloud on the ShapeNet and KITTI [1]
dataset during testing. We evaluate our method on the number of points ranging from 100 to
4000 and present the results in Figure 3. As expected, performance degrades as we reduce
the number of available points.

1.3.4 Densification of KITTI point clouds

To evaluate the quantitative effects of simply densifying the input point cloud without com-
pleting occluded regions, we design a simple densification method. For each point in the
input partial point cloud, we find its 10 nearest neighbors and estimate the eigenvalues of
this local neighborhood. An ellipsoid is formed using these values and points are uniformly
sampled within this volume. This approximates the local surface. From Table 2 of the main
paper, the improvement of our method over the results of this densification method demon-
strates that our model is completing the partial point clouds rather than simply densifying
the partial input cloud.

1.3.5 Performance Analysis with respect to Occlusions

We conduct an experiment to assess the impact of occlusions in the input partial point clouds
on the ability of the model to complete the given shape. To do so, we introduce artificial
occlusions by removing a certain number of regions from the input during testing (we have
divided the input into 8§ total regions). Given that the original input is already naturally
occluded, we artificially remove at most three regions because beyond that, the input is barely
visible. The results are shown in Table 2; we can observe that as the number of artificial
occlusions in the input increases, there is a slight drop in performance for all categories.
However, the model is considerably robust to the additional occlusions.

1.4 Metrics

In this section, we report different metrics for further analysis of our method.

1.4.1 Precision and Coverage of observed and unobserved regions

For a detailed analysis, we compute the precision and coverage of the observed and unob-
served regions of the input point cloud. To categorize points as observed or unobserved, we
compute the distance between each point in the predicted point cloud and its nearest neighbor
in the input point cloud. We compute the mean and standard deviation of these distances for
each point cloud and use 1 standard deviation over this mean as a threshold. Points with the
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Figure 1: Quantitative Results on the number of views (1, 2, and 3) (with and without

inpainting red) used during network training. Our original method trains on 4 views. All
the values reported are average Chamfer Distance metric over the ShapeNet (Airplane, Car,
Chair) and KITTI dataset. We are able to outperform the baseline using a limited number of
views due to our use of inpainting.

nearest neighbor distance greater than this threshold are considered as unobserved, while all
other points are considered observed. The precision and coverage are computed separately
for each of these types of points and we report the results in the Supplementary Table 4. As
expected, we find that the precision and coverage of the observed regions are slightly better
than that of unobserved regions in the input partial point cloud; however, the results are rela-
tively similar for the observed and unobserved regions, which provides further evidence that
we are completing (and not just densifying) the input (see also Section 1.3.4).

1.4.2 F1-Score

Following Xie et al [5], we evaluate the F1-score@ 1%, which is the harmonic mean between
precision and recall, on the ShapeNet dataset. In this context, “precision” is the percentage
of the points in the predicted point cloud which are within a specified distance threshold with
the ground truth. “Recall" is the percentage of the points in the ground truth point cloud that
are within a distance threshold with the predicted point cloud. Precision helps to measure
the accuracy of the prediction and recall measures the coverage of the prediction. In this
metric, we use d = 1% of the side length of the predicted point cloud. It can be observed
from the Supplementary Table 5 that our method is able to outperform the baseline DPC [4]
when evaluated on this metric. We do not report the results on Gu et al. [3] since their code
is not open-source.

1.4.3 Uniformity Metric

We also evaluate the uniformity metric following Xie et al [5] on the ShapeNet and KITTI
datasets. In the Supplementary Table 6, we compare our method with the baseline DPC on
the ShapeNet dataset. Our method gives a similar performance with the baseline with respect
to this metric, revealing that both methods have similar uniformity of predicted points.

For the KITTTI dataset, we compare our method with the ablation of our method without
inpainting, as DPC does not train and evaluate on KITTI and Gu et al. [3] do not have
open-source code. We report the results on KITTI in Supplementary Table 7 and show the
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Figure 2: Qualitative results on varying the number of views given as input to the PointP-
nCNet. The first, second, third, and fourth row shows the results on the ShapeNet test set of
car, chair, plane, and Semantic KITTI [1] dataset respectively. As can be seen, the results of
2 views and 3 views are qualitatively very similar to the results with 4 views. This demon-
strates that our method is able to take advantage of a reduced number of views, due to our
use of inpainting.

improvement in the performance of our model when using inpainting.
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Figure 3: Quantitative Results of the Chamfer Distance metric with respect to the number of
points in the input point cloud during testing.
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1.5 Qualitative Results

We present additional visualizations of the complete predicted point cloud generated by our
network, PointPnCNet.

Cars: As can be observed from the Supplementary Figure 4, our model is able to com-
plete the finer details of a car such as the headlight of a car and generates a more defined
outer boundary in comparison to DPC [4]. We also show that our network has the ability
to not only complete the shapes of general cars, but also the shape of a truck as shown in
the third row of Supplementary Figure 4. We show a few failure cases as well on the car
category in the Supplementary Figure 5. Our method is unable to create detailed shapes of
various sports cars. Further, for the truck in the second row, our method fails to create a gap
between the front and back of a truck.

Chairs: We present in Supplementary Figure 6 that our method is able to generate finer
completion results on different types of chairs such as a sofa and desk chair than DPC [4].
It is able to complete the front, back, and arms of the chair. There are also a few failure
cases where the network generates noisy results especially near the legs of a chair as seen in
Supplementary Figure 7.

Airplanes: From Supplementary Figure 8, we observe that the network is able to com-
plete the front, back, and wings of the planes. Supplementary Figure 9 shows some failure
cases in which it also generates some noisy points near the wings of the planes.

KITTI: We show the visualizations where our network is able to complete the partial
point cloud cars from the LiDAR scans of the Semantic KITTI dataset in the first and sec-
ond row of Supplementary Figure 10. Additionally, there are a few failure cases where the
network is unable to generate the details in a fine manner such as the tire of a car as seen in
the third and fourth row of Supplementary Figure 10. We also show the completion results
of the partial point clouds in a scene in the Supplementary Figure 11.

ShapeNet Categories: We present the qualitative results on the 5 other categories of
the ShapeNet dataset - Cabinet, Lamp, Sofa, Table, and Vessel in the Figure 12. We compare
the results of our method with our ablation of without inpainting. It can be observed that our
method is able to complete the shape of the incomplete point clouds whereas our method
without inpainting outputs noisy points.

1.6 Comparison with supervised method

To analyze the performance gap between self-supervised method and supervised method,
we compare the performance of our method with a fully supervised method, PCN [7] on
8 categories of the ShapeNet dataset and present the results in Table 8. Since our method
builds on the architecture of PCN, we compare our method to fully-supervised PCN; the
choice of architecture is somewhat orthogonal to our proposed method of inpainting. We
observe that the fully supervised PCN outperforms our self-supervised method, as expected.
However, our results indicate that our method has reduced the gap between self-supervised
and fully supervised approaches. In Table 8, we also compare our method to the ablation of
“no inpainting” across 8 object categories of ShapeNet and show consistent improvement in
performance.
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Airplane | Car | Chair | KITTI
Es Ee Dy Di|™¢p T cD | ¢D | CD
v v 1.830 2.710 | 3.260 | 0.336
v v 1.930 2.560 | 3.480 | 1.042
v v v 1.820 2.580 | 3.320 | 0.357
v oV 1.950 2.790 | 3.520 | 0.329
v v 2.010 2.610 | 3.730 | 0.392
v v v 1.930 2.650 | 3.610 | 0.362
v v oV 1.860 2.840 | 3.110 | 0.388
v v v 1.850 2.530 | 3.250 | 1.131
v v v v 1.660 2.480 | 2.700 | 0.095

Table 1: We study the performance of the architecture styles through combinations of lo-
cal and global encoders and decoders on the Airplane, Car, Chair of the Shapenet dataset
and KITTTI dataset via Chamfer Distance metric. It can be observed that a combination of
global and local encoders and decoders gives the best performance among all the possible

combinations.

Number of regions

Airplane Car Chair KITTI
removed
0 1.66 248 2.70 0.095
1 1.67 250 273 0.097
2 1.76 260 279 0.100
3 1.89 2.67 295 0.102

Table 2: Chamfer Distance onShapenet and KITTI with varying numberof removed regions

. Airplane | Car | Chair | KITTI
Ablation D D D D
Adding third level 2.070 2.550 | 3.030 | 0.123
Our method (2 levels) 1.660 2480 | 2.700 | 0.095

Table 3: Quantitative Results on the architecture changes in our method. All the Chamfer
Distance metric values reported for Shapenet are multiplied with 100. It can be observed
that adding a third level does not give a significant improvement in the performance.

Region Airplane Car Chair KITTI
Observed Precision 0.771 1.113  1.767  0.625

Unobserved Precision 0.824 1.127  1.844  0.640
Observed Coverage 0.848 1.490 1344  0.531

Unobserved Coverage 0.857 1.496 1355 0.648

Table 4: Precision and Coverage for the observed and unobserved regions on the Shapenet

and KITTI dataset.
Method || Airplane | Car | Chair
DPC[4] 0.423 0.364 | 0.315
Ours 0.626 0.450 | 0.409

Table 5: F1-Score@ 1% on the Shapenet dataset.
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Airplane

Cars Chairs

p

DPC[4] Ouwurs | DPC Ours | DPC Ours

0.4%
0.6%
0.8%
1.0%
1.2%

0.775 0.775 | 0.758 0.757 | 0.785 0.787
0.674  0.673 | 0.646 0.647 | 0.664 0.664
0490 0490 | 0.489 0.489 | 0.498 0.497
0.395 0.394 | 0.388 0.389 | 0.385 0.385
0.256  0.257 | 0.246 0.245 | 0.265 0.264

Table 6: Uniformity Metric on the Shapenet dataset compared with the baseline DPC [4].

P w/o inpainting  Ours
04% || 0.815 0.750
0.6% || 0.773 0.658
0.8% || 0.697 0.527
1.0% || 0.588 0.496
1.2% || 0.517 0.384

Table 7: Uniformity Metric on the KITTI dataset compared with our baseline of our model

without inpainting.

Airplane

Cabinet Car Chair Lamp Sofa  Table Vessel

Ours (w/o inpainting)
Ours (Self-Supervised)

0.026
0.016

0.045 0.031 0.039 0.041 0.039 0.040 0.033
0.027 0.024 0.027 0.030 0.029 0.025 0.026

PCN (Fully Supervised)[7] || 0.005

0.010 0.008 0.010 0.011 0.011 0.008 0.009

Table 8: Quantitative results of comparison of our self-supervised method (Ours) with fully
supervised method, PCN [7], and ablation of our method without inpainting.

Input Input (DPC)

GT DPC Ours

Figure 4: Success cases on the Car category of the ShapeNet dataset. It can be observed that
our model is able to complete the finer details of a car such as the headlight of a car and
generates a detailed outer boundary in comparison to DPC [4] in all the rows. It is also able
to generate the shape of a truck as can be seen in the third row.
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Figure 5: Failure cases on the Car category of the ShapeNet dataset. We compare our method
with the results of DPC [4]. Our method fails to create the detailed shapes of various sports
cars. Further, for the truck in the second row, our method fails to create a gap between the
front and back of a truck.

Input (DPC) GT DPC

¢
Figure 6: Success cases on the Chair category of the ShapeNet dataset. We compare our
method with the results of DPC [4]. Our method is able to show finer completion results on

different types of chairs such as a sofa and desk chair than DPC [4]. It is able to complete
the front, back, and arms of the chair.
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Input (DPC)

Figure 7: Failure cases on the Chair category of the ShapeNet dataset. We compare our
method with the results of DPC [4]. It can be observed in these cases that the network
generates noisy results especially near the legs of a chair.

Input Input (DPC) GT DPC Ours

Figure 8: Success cases on the Plane category of the ShapeNet dataset. We compare our
method with the results of DPC [4]. It can be observed that the network is able to complete
the front, back and wings of the planes.
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Input Input (DPC) GT DPC Ours

Figure 9: Failure cases on the Plane category of the ShapeNet dataset. We compare our
method with the results of DPC [4]. The network generates some noisy points near the
wings of the planes.

|nput Ours

Figure 10: Completion of partial point cloud cars from the LiDAR scans of the Semantic
KITTI dataset (first and second row). The third and fourth row show some failure cases of
the network where the network is unable to generate the smaller details such as a tire of a
car.
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"

i -

Figure 11: Completion of partial point cloud of cars in a LIDAR scan of the Semantic KITTI
dataset.
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Input GT Ours (w/o inpainting) Ours

Cabinet

Cabinet

Lamp

Lamp

Sofa

Sofa

Table

Table

Vessel

Vessel

Figure 12: Qualitative Results on five categories of Shapenet compared to our ablation of
without inpainting.
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