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A. Model Architectures
The proposed Tendentious Noise-rectifying Framework (TNF) is designed for pathological
HCC grading with noisy annotations. The detail of TNF architecture is provided for better
illustrating the framework.

Figure 1: The flow diagram of Tendentious Noise-rectifying Framework (TNF). The en-
coder Ec is adopted in the main branch (the bottom one) to extract cellular features, and the
encoder Es is adopted in the auxiliary branch (the top one) to generate corresponding feature
polymer representing structural features.
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As described in Section 3 of the original paper, TNF contains two branches in charge of
classification and rectification. The Resnet18 [3] pretrained on ImageNet [2] is adopted as
the encoder Ec of the main branch to extract cellular features Fc for HCC grading. For the
auxiliary branch, Es is the encoder of the pretrained AE on the training dataset to generate
the feature polymer. The Esa and Es f is followed to output the α and structural features
Fs, respectively. Here, the size of 50x input patch is 448 × 448 × 3, and the dimension
of output features Fc and Fs is 512 × 1. These two features will be contacted to combine
cellular and structural information, and inputted into the classifier to get a 5 dimension vector,
representing the prediction confidence on five grades. The architecture of Es, Es f , and Esa is
shown in Table 1. Batch Normalization is adopted after each convolutional layer.

Table 1: The network architectures for encoder Es, Es f , and Esa. Batch Normalization is
adopted after each convolutional layer.

Encoder Es in the auxiliary branch

ReLU, kernel_size=4×4, output_channel=16, conv, stride=2, padding=1

ReLU, kernel_size=4×4, output_channel=32, conv, stride=2, padding=1

ReLU, kernel_size=4×4, output_channel=32, conv, stride=2, padding=1

ReLU, kernel_size=4×4, output_channel=64, conv, stride=2, padding=1

ReLU, kernel_size=4×4, output_channel=64, conv, stride=2, padding=1

ReLU, kernel_size=4×4, output_channel=64, conv, stride=2, padding=1

Encoder Es f in the auxiliary branch

ReLU, kernel_size=3×3, output_channel=128, conv, stride=2, padding=3

ReLU, kernel_size=3×3, output_channel=256, conv, stride=2, padding=1

ReLU, kernel_size=3×3, output_channel=256, conv, stride=1, padding=1

ReLU, kernel_size=3×3, output_channel=512, conv, stride=2, padding=1

ReLU, kernel_size=3×3, output_channel=512, conv, stride=1, padding=1

Average Pooling, ourput_size=1×1

Encoder Esa in the auxiliary branch

ReLU, kernel_size=3×3, output_channel=128, conv, stride=2, padding=3

ReLU, kernel_size=3×3, output_channel=256, conv, stride=2, padding=1

ReLU, kernel_size=3×3, output_channel=256, conv, stride=1, padding=1

ReLU, kernel_size=3×3, output_channel=512, conv, stride=2, padding=1

ReLU, kernel_size=3×3, output_channel=512, conv, stride=1, padding=1

Average Pooling, ourput_size=1×1

ReLU, output_channel=128, dense

Sigmoid, output_channel=1, dense
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B. Qualitative Comparison

The results of comparative experiment are shown in the original paper, containing the metrics
of accuracy, sensitivity, and specificity. Additionally, the Receiver Operating Characteristic
(ROC) curve is wildly used to analyze diagnostic results in medical tasks [6, 7]. The ROC
curve can better evaluate the robustness with different thresholds, and helps to find the best
threshold to classification.

The ROC curve graphs of different methods are shown in Fig. 2. Here the best model
of each method is chosen. It can be seen that TNF achieves largest AUC (0.9670) among
all existing methods, which proves the high robustness of our framework. It’s also obvious
that, although most methods like GCE, SL, and LSR get improvement in the accuracy of
classification, the results on AUC are not as good as CE (0.9564). It indicates these anti-noise
methods are not robust enough to HCC dataset, which makes them inapplicable in this task.
In summary, the proposed TNF has comprehensive ability in HCC grading, and that is the
reason why TNF is superior to existing methods and achieves state-of-the-art performance.

Figure 2: The ROC curve graphs of different methods on the test dataset. Here all the
cancerous grades are considered as the same class to evaluate the correlation between true
positive rate and false positive rate. The best model of each method is chosen to get the
results. The Area Under Curve (AUC) is shown in the bottom right.

To further demonstrate the effectiveness of the proposed method, additional experiments
on CAMELYON16 dataset [1] are conducted, which consists of pathological slides of breast
cancers with binary labels. CAMELYON16 dataset contains 111 tumor slides and 160 nor-
mal slides, from which we crop 36,000 patches for each category as the training and valida-
tion set. And 20,000 patches are also cropped from 121 testing slides to evaluate the model
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Table 2: The classification results of different methods on CAMELYON16. The metrics
contain accuracy (Acc.), sensitivity (Sen.), specificity (Spe.). All these results averaged over
ten experiments and the best results are marked in bold (All scores are in %).

CE CM [9] GCE [8] SCE [10] LSR [5] ELR+ [4] TNF

Acc.
86.25
±0.006

86.57
±0.007

86.60
±0.007

87.73
±0.006

86.19
±0.008

88.04
±0.008

88.61
±0.009

Sen.
89.92
±0.008

88.67
±0.010

90.24
±0.008

90.05
±0.009

89.58
±0.007

90.61
±0.009

90.93
±0.007

Spe.
82.67
±0.05

84.19
±0.005

83.03
±0.004

85.41
±0.007

82.89
±0.006

84.52
±0.006

85.20
±0.006

performance. As shown in Table 2, the proposed TNF still achieves the best performance
among all existing methods, demonstrating the generalization of our method.

Figure 3: The visualization results of models trained by different losses. Here the left fig-
ure is the thumbnails of the whole slides, and the right figure is local region to show the
details. In the figure of Ground Truth, accurate annotations are supplemented for better eval-
uation, where green loop denotes the healthy region, and the red loop denote the cancerous
region. The size of the local region is 15000×15000, containing about 900 patches with 50x
magnification.

C. Visualization Results
This paper has shown exhaustive results to demonstrate the high accuracy and robustness
in test dataset. The fundamental idea of our framework, on the other hand, is rectifying
noisy labels during training to avoid overfitting. So in order to evaluate the rectification
ability of the proposed NR loss, visualization figures of models trained by CE and NR are
shown in Fig. 3. Additional accurate annotations are added in the enlarged local regions.
From Fig. 3, we can see that these regions are roughly annotated as tumors by pathologists.
The model trained by CE will be confused and misguided by the noisy labels. Conversely,
the prediction of model trained by NR is much more similar to the Ground Truth (GT). It
indicates that with the proposed NR loss, the model will be well optimized by the rectified
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labels even the annotated labels of these patches are incorrect, which makes our framework
robust in HCC grading with noisy annotations.

D. Generalization of NR Loss
The NR loss proposed in this paper is derived based on the special characteristics of HCC
grading. Since each sample only contains one kind of HCC for most samples, the NR loss
for HCC grading contains binary targets. Nevertheless, this NR loss can be generalized to
multi-class labels by replacing the item of the reversed label with the product of items on
other categories, which is defined as:

LNR−multi =−log(1− (1− p j)
1−α

K

∏
k 6= j

(1− pk)
α), (1)

where p j denotes the prediction on the annotated label, and pk denotes the prediction on
other labels. This multi-class NR loss is evaluated on MNIST and CIFAR-10 with 40%
random noise. The results are shown in Table 3. Here, the α is set as constant 0.01, and all
these methods use ResNet-18 as the backbone. The results demonstrate that our proposed
NR loss can also be generalized into multi-class for rectifying the noise.

Table 3: The classification accuracy of different methods on MNIST and CIFAR-10 with
40% random noisy labels. All these results averaged over ten experiments and the best
results are marked in bold (All accuracies are in %).

CE CM [9] SCE [10] ELR+ [4] NR

MNIST 98.28±0.002 98.36±0.002 98.64±0.001 98.69±0.002 98.90±0.002

CIFAR-10 80.06±0.018 81.77±0.014 84.38±0.018 84.92±0.022 85.84±0.017

References
[1] Diagnostic assessment of deep learning algorithms for detection of lymph node metas-

tases in women with breast cancer. JAMA: The Journal of the American Medical Asso-
ciation, 318(22):2199–, 2017.

[2] Jia Deng, Wei Dong, Richard Socher, Li Jia Li, and Fei Fei Li. ImageNet: A large-
scale hierarchical image database. In IEEE Conference on Computer Vision Pattern
Recognition, 2009.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[4] Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda.
Early-learning Regularization Prevents Memorization of Noisy Labels. arXiv preprint
arXiv:2007.00151, 2020.

Citation
Citation
{Tanno, Saeedi, Sankaranarayanan, Alexander, and Silberman} 2020

Citation
Citation
{Wang, Ma, Chen, Luo, Yi, and Bailey} 2019

Citation
Citation
{Liu, Niles-Weed, Razavian, and Fernandez-Granda} 2020



6 YU ET AL.: NOISE-RECTIFYING FOR PATHOLOGICAL HCC GRADING

[5] Michal Lukasik, Srinadh Bhojanapalli, Aditya Menon, and Sanjiv Kumar. Does label
smoothing mitigate label noise? In International Conference on Machine Learning,
pages 6448–6458. PMLR, 2020.

[6] Charles E Metz. Some practical issues of experimental design and data analysis in
radiological roc studies. Investigative Radiology, 24(3):234–245, 1989.

[7] Nancy A Obuchowski. Receiver operating characteristic curves and their use in radiol-
ogy. Radiology, 229(1):3–8, 2003.

[8] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen
Qu. Making Deep Neural Networks Robust to Label Noise: A Loss Correction Ap-
proach. In IEEE Conference on Computer Vision Pattern Recognition, 2017.

[9] Ryutaro Tanno, Ardavan Saeedi, Swami Sankaranarayanan, Daniel C. Alexander, and
Nathan Silberman. Learning From Noisy Labels by Regularized Estimation of An-
notator Confusion. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020.

[10] Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Sym-
metric Cross Entropy for Robust Learning with Noisy Labels. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 322–330, 2019.


