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1 Network details
In this document, we provide the architecture details for all the components of the pro-
posed network. It includes the content encoder (Table 2), motion encoder (Table 1), motion
discriminator (Table 3), the video discriminator (Table 4), the motion generator (Table 5),
motion integrator (Table 6) and the video decoder (Table 7).

We also show more qualitative results on various datasets and on various component’s
effect in the proposed approach. Apart from this, the supplementary material also contains a
demo video for our Latent Action Representation for Video Prediction based videos.

2 Metrics
To measure our generated video’s overall quality, we use SSIM [13], PSNR [4], FVD [8,
9] and FID [3]. We follow [9] for FVD computation and use a pre-trained Inception3D
network to generate the embeddings. We follow [3] for FID computation, using the pre-
trained InceptionV3 network on each frame of the video and averaging over the generated
frames to get mean score of each video.

3 Synthetic Dataset
We create a synthetic dataset for validating our approach in a controlled setting. The syn-
thetic dataset consists up to 2 objects per video. Each video has a unique constant Gaussian
noise as background, which is fixed throughout the video. There are 6 total action classes
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Name Layer Input Kernel Dims Strides Output Dims
(T×H×W) (T×H×W) (T×H×W×C)

AE-Conv1 (skip) 3D Conv v̂ 7 × 7 × 7 2 × 2 × 2 8 × 56 × 56 × 64
AE-MaxPool1 3D Max Pool AE-Conv1 1 × 3 × 3 1 × 2 × 2 8 × 28 × 28 × 64
AE-Conv2 3D Conv AE-MaxPool1 1 × 1 × 1 1 × 1 × 1 8 × 28 × 28 × 64
AE-Conv3 (skip) 3D Conv AE-Conv2 3 × 3 × 3 1 × 1 × 1 8 × 28 × 28 × 192
AE-MaxPool2 3D Max Pool AE-Conv3 1 × 3 × 3 1 × 2 × 2 4 × 14 × 14 × 192
AE-IncModule1 Inception Module AE-MaxPool2 - - 4 × 14 × 14 × 256
AE-IncModule2 Inception Module AE-IncModule1 - - 4 × 14 × 14 × 480
AE-MaxPool3 3D Max Pool AE-IncModule2 3 × 3 × 3 1 × 1 × 1 4 × 14 × 14 × 480
AE-IncModule3 Inception Module AE-MaxPool3 - - 4 × 14 × 14 × 592
AE-IncModule4 Inception Module AE-IncModule3 - - 4 × 14 × 14 × 512
AE-IncModule5 Inception Module AE-IncModule4 - - 4 × 14 × 14 × 512
AE-IncModule6 Inception Module AE-IncModule5 - - 4 × 14 × 14 × 528
AE-IncModule7 Inception Module AE-IncModule6 - - 4 × 14 × 14 × 832
AE-IncModule8 Inception Module AE-IncModule7 - - 4 × 14 × 14 × 832
AE-IncModule9 Inception Module AE-IncModule8 - - 4 × 14 × 14 × 1024
AE-Conv4 3D Conv AE-IncModule9 3 × 3 × 3 1 × 1 × 1 4 × 14 × 14 × 256
AE-Conv5a 3D Conv AE-Conv1 3 × 3 × 3 1 × 1 × 1 8 × 14 × 14 × 128
AE-ReLU5a ReLU AE-Conv5a - - 8 × 14 × 14 × 128
AE-Conv5b 3D Conv AE-Conv3 3 × 3 × 3 1 × 1 × 1 8 × 28 × 28 × 128
AE-ReLU5b ReLU AE-Conv5b - - 8 × 28 × 28 × 128

Table 1: Network details for the motion encoder Ev, which is used to encode the input video v̂
into motion features êm. AE refers to the ActionEncoder. Note that the input column contains
either the tensor used as input to the particular layer or the layer whose output is used as input.
Also, note that the Inception module is that from [1]. Since the proposed method involves
hierarchical transformation, there are two outputs from this network: ActionEnc-ReLU5a,
ActionEnc-ReLU5b. The bottom section of the table indicates three extra convolutional
layers, one for each output, used to force a uniform number of channels for all two encodings.

(1: move left to right, 2: move right to left, 3: move up to down, 4: move down to up, 5:
split and move apart, 6: merge together). Action class 1-4 has one object per video while
class 5 and 6 has two objects per video. The objects have random shape of triangle, circle
or rectangle with equal probability. Triangle and rectangle object also have random rotation.
The objects can have random size between 20-40 pixels and can randomly scale up or down
through the video by a factor of 2x. There is an equal probability for the object to have
constant or variable speed through the video. We generate 500 videos per class to get a total
of 3000 unique videos. We use 420 videos per class in training and 80 videos per class in
testing set.

We evaluate the ability of the proposed approach to model the motion dynamics on a
synthetic dataset. Figure 4 shows some sample videos predicted using LARNet. We observe
that the generated videos have a clearly visible motion across frames which represents the
target class. The action generation has a stochastic nature and a variation in motion is also
evident in the generated videos. This variation includes stochastic path of the generated
motion and a change (zoom-in/zoom-out) in size of the object. LARNet is also able to
capture the variations in the object shapes as it generates successive future frames while
synthesizing the target motion.

Citation
Citation
{Carreira and Zisserman} 2017



BIYANI ET AL.: LARNET: LATENT REPRESENTATION FOR ACTION SYNTHESIS 3

Name Layer Input Kernel Dims Strides Output Dims
(T×H×W) (T×H×W) (T×H×W×C)

IE-Conv1a 2D Conv + Batchnorm P j 3 × 3 1 × 1 112 × 112 × 64
IE-ReLU1a ReLU IE-Conv1a - - 112 × 112 × 64
IE-Conv1b 2D Conv + Batchnorm IE-ReLU1a 3 × 3 1 × 1 112 × 112 × 64
IE-ReLU1b ReLU IE-Conv1b - - 112 × 112 × 64
IE-MaxPool1 2D Max Pool IE-ReLU1b 2 × 2 2 × 2 56 × 56 × 64
IE-Conv2a 2D Conv IE-MaxPool1 3 × 3 1 × 1 56 × 56 × 128
IE-ReLU2a ReLU IE-Conv2a - - 56 × 56 × 128
IE-Conv2b 2D Conv IE-ReLU2a 3 × 3 1 × 1 56 × 56 × 128
IE-ReLU2b ReLU IE-Conv2b - - 56 × 56 × 128
IE-MaxPool2 2D Max Pool IE-ReLU2b 2 × 2 2 × 2 28 × 28 × 128
IE-Conv3a 2D Conv IE-MaxPool2 3 × 3 1 × 1 28 × 28 × 256
IE-ReLU3a ReLU IE-Conv3a - - 28 × 28 × 256
IE-Conv3b 2D Conv IE-ReLU3b 3 × 3 1 × 1 28 × 28 × 256
IE-ReLU3b ReLU IE-Conv3b - - 28 × 28 × 256
IE-Conv3c 2D Conv IE-ReLU3b 3 × 3 1 × 1 28 × 28 × 256
IE-ReLU3c ReLU IE-Conv3c - - 28 × 28 × 256
IE-MaxPool3 2D Max Pool IE-ReLU3c 2 × 2 2 × 2 14 × 14 × 256
IE-Conv4a 2D Conv IE-ReLU2b 3 × 3 1 × 1 14 × 14 × 128
IE-ReLU4a ReLU IE-Conv4a - - 14 × 14 × 128
IE-Conv4b 2D Conv IE-ReLU3c 3 × 3 1 × 1 28 × 28 × 128
IE-ReLU4b ReLU IE-Conv4b - - 28 × 28 × 128
IE-Conv4c 2D Conv IE-MaxPool3 3 × 3 1 × 1 56 × 56 × 128
IE-ReLU4c ReLU IE-Conv4c - - 56 × 56 × 128

Table 2: Network details for the content encoder Ea, which was based upon [6]. IE refers
to ImageEncoder. The above table contains an enumeration of all layers and operations used
to encode the input frame x0 into an appearance feature map. Note that the input column
contains either the tensor used as input to the particular layer or the layer whose output is
used as input. Since the proposed method involves hierarchical transformation, there are
three outputs from this network: ImageEnc-ReLU4a, ImageEnc-ReLU4b, and ImageEnc-
ReLU4c. The bottom section of the table indicates three extra convolutional layers, one for
each output, used to force a uniform number of channels for all three encodings.

Name Layer Input Kernel Dims Strides Output Dims
DiscV-Conv1 (skip) 3D Conv v / v̂ 4 × 4 × 4 2 × 2 × 2 8 × 56 × 56 × 64
DiscV-Conv2 (skip) 3D Conv DiscV-Conv1 3 × 3 × 3 1 × 1 × 1 8 × 56 × 56 × 32
DiscV-Conv3 (skip) 3D Conv DiscV-Conv2 3 × 3 × 3 1 × 1 × 1 8 × 56 × 56 × 16
DiscV-Conv4 (skip) 3D Conv DiscV-Conv3 3 × 3 × 3 1 × 1 × 1 8 × 56 × 56 × 8
DiscV-Conv5 (skip) 3D Conv DiscV-Conv4 4 × 4 × 4 2 × 2 × 2 4 × 56 × 56 × 3

Table 3: Network details for the Video discriminator, which takes in the generated video v
and actual video v̂.

4 Additional Results

Hierarchical motion integration We observe that the hierarchical motion module has sig-
nificant impact on the consistent motion generation of a video. We show the qualitative
difference of using a generative model without any motion module (BaseNet-1) and a gen-
erative model with a hierarchical motion module (LARNet-MI-3) in Figure 5. In Figure 5,
we show how the motion module affects consistent motion generation for the NTU-RGB+D
dataset [5]. For each action, the results from BaseNet-1 often blur out and lose the mo-
tion information after few frames. In contrast, the results from LARNet-MI-3 with motion
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Name Layer Input Kernel Dims Strides Output Dims
(T × H ×W) (T × H ×W) (T × H ×W × C)

DiscA-Conv1 3D Conv em / êm 3 × 3 × 3 1 × 1 × 1 4 × 14 × 14 × 64
DiscA-Conv2 3D Conv DiscA-Conv1 3 × 3 × 3 1 × 1 × 1 4 × 14 × 14 × 32
DiscA-Conv3 3D Conv DiscA-Conv2 3 × 3 × 3 1 × 1 × 1 4 × 14 × 14 × 16
DiscA-Conv4 3D Conv DiscA-Conv3 3 × 3 × 3 1 × 1 × 1 4 × 14 × 14 × 8
DiscA-Conv5 3D Conv DiscA-Conv4 3 × 3 × 3 1 × 1 × 1 4 × 14 × 14 × 8

Table 4: Network details for the motion discriminator Dm, which takes generated represen-
tation em and motion representation êm which is extracted from a real video.

Name Layer Input Kernel Dims Strides Output Dims
(T × H ×W) (T × H ×W) (T × H ×W × C)

ActGen-Conv1 2D Conv z + pe + ae 4 × 4 2 × 2 2 × 2 × 128
ActGen-Conv2 2D Conv ActGen-Conv1 4 × 4 2 × 2 4 × 4 × 128
ActGen-Conv3 3D Conv ActGen-Conv2 4 × 4 × 4 2 × 2 × 2 2 × 8 × 8 × 128
ActGen-Conv4 3D Conv ActGen-Conv3 4 × 4 × 4 2 × 2 × 2 4 × 16 × 16 × 128
ActGen-Conv5 3D Conv ActGen-Conv4 1 × 3 × 3 1 × 1 × 1 4 × 14 × 14 × 128
ActGen-Conv6 3D Conv ActGen-Conv5 4 × 4 × 4 2 × 2 × 2 4 × 28 × 28 × 128

Table 5: Network details for motion generator Gm, which takes in stochastic noise z, position
encoding pe and word embedding ae and generates a latent action representation em

Name Layer Input Kernel Dims Strides Output Dims
(T × H ×W) (T × H ×W) (T × H ×W × C)

AppT-Conv1 2D Conv ActT-Conv3(1)
+ KPD-Gaussian
+ ImageEnc-ReLU4a 7 × 7 1 × 1 14 × 14 × 256

AppT-Split Split AppT-Conv1 - - 14 × 14 × 128
14 × 14 × 128

AppT-Sig1 Sigmoid AppT-Split(1) - - 14 × 14 × 128
AppT-Sig2 Sigmoid AppT-Split(2) - - 14 × 14 × 128
AppT-Conv2 2D Conv ActT-Conv3(1)

+ KPD-Gaussian
+ AppT-Sig1 *
ImageEnc-ReLU4a

7 × 7 1 × 1 14 × 14 × 128

AppT-Tanh Tanh AppT-Conv2 - - 14 × 14 × 128
AppT-Final Concat (1 - AppT-Sig2) *

ImageEnc-ReLU4a
+ AppT-Sig2 * AppT-
Tanh

- - 14 × 14 × 128

Table 6: Network details for the Motion Integrator, MI , which is used to transform the appear-
ance embeddings from the content encoder Ea according to the transformed action features
and the predicted action key-points. Note that tA is a recurrent network and only one of the
recurrent cells is detailed above. This cell would be repeated T times, where T is the size
of the temporal dimension of the transformed action features. Then, the T cell outputs are
concatenated in the temporal dimension to produce a transformed appearance of the same
size as the transformed action features. Also, note that hierarchical transformation is used,
so the recurrent network is used three times, once for each of the appearance embeddings.

module shows how the model generates motion for the corresponding action.
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Name Layer Input Kernel Dims Strides Output Dims
(T × H ×W) (T × H ×W) (T × H ×W × C)

VidGen-
Conv1a

3D Conv AppT1+ActEnc1 4 × 4 × 4 2 × 2 × 2 8 × 28 × 28 × 256

VidGen-
Conv1b

3D Conv VidGen-Conv1a 3 × 3 × 3 1 × 1 × 1 8 × 28 × 28 × 256

VidGen-
Conv2a

3D Conv AppT2 + VidGen-
Conv1b

4 × 4 × 4 2 × 2 × 2 16 × 56 × 56 × 256

VidGen-
Conv2b

3D Conv VidGen-ReLU2a 3 × 3 × 3 1 × 1 × 1 16 × 56 × 56 × 128

VidGen-
Conv3a

3D Conv AppT3 + VidGen-
Conv2b

1 × 4 × 4 1 × 2 × 2 16 × 112 × 112 × 128

VidGen-
Conv3b

3D Conv VidGen-Conv3a 3 × 3 × 3 1 × 1 × 1 16 × 112 × 112 × 64

VidGen-
Conv4a

3D Conv VidGen-Conv3b 3 × 3 × 3 1 × 1 × 1 16 × 112 × 112 × 8

VidGen-
Conv4b

3D Conv VidGen-Conv4a 1 × 1 × 1 1 × 1 × 1 16 × 112 × 112 × 3

VidGen-Sig Sigmoid VidGen-Conv4b - - 16 × 112 × 112 × 3

Table 7: Network details for the video decoder, Gv, which generates the final output video v
based on the latent video features ev generated using motion integration MI .

Figure 1: Generated videos using our method on the NTU dataset. Row 1: rub two hands,
take off jacket, Row 2: check time from watch, phone call, Row 3: fan self, throw, Row 4:
point finger, throw, Row 5: stand up, salute, Row 6: sit down, take off glasses, Row 7: sneeze
cough, sit down.

Comparison with previous methods We show the qualitative comparison against condi-
tional VGAN [10], G3AN [12], MoCoGAN [7] and ImaGINator [11] for the NTU-RGB+D
dataset [5] in Figure 3. VGAN [10] uses first frame as conditional input and uses a separate
foreground and background stream, which makes it favorable to produce videos with static
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Figure 2: Demonstration of effects of various components of the proposed LARNet for video
generation. It can be observed that with low motion integration the video tries to repeat first
frame in row 1. As we add motion and various losses, the generated video quality improves
(row 2 - 5). Row 1: LARNet−MI−1, Row 2: LARNet−MI−3, Row 3: +[Lv

adv], Row 4:
+[Lv

adv,Lm
adv
], Row 5: +[Lv

madv,L
m
adv].

images. G3AN [12] and MoCoGAN [7] use the class label as conditional input.

Action representation synthesized from one-hot vectors We use the class label as one-
hot encoding instead of using action embedding ae from GloVe-300 to generate action rep-
resentation. The full network is trained using in the same manner other than the change in
input action encoding vector. The quantitative scores are shown in Table 8.

No action representation We use the class label as one-hot encoding instead of using
action embedding ae from GloVe-300 to generate action representation. This variation uses
skip connections from appearance encoder without requiring any motion integration module.
The full network is trained using a reconstruction MSE loss and an adversarial loss on the
generated video. The quantitative scores are shown in Table 8.

Approach FID ↓ FVD ↓ PSNR ↑ SSIM ↑
LARNet1−hot 177.02 14.76 25.64 0.92
LARNet1−hot,MI−3 168.34 14.09 27.11 0.93
LARNetGloVe,MI−3 165.53 13.34 28.4 0.94

Table 8: Comparison of using one-hot encoding and GloVe-300 word encoding for the labels
in our LARNet model. LARNet1−hot uses only one-hot encoding for the labels and has
no hierarchical motion integrator. LARNet1−hot,MI−3 uses one-hot encoding for the labels
and has hierarchical motion integrator (MI - 3). LARNetGloVe,MI−3 uses the GloVe-300 text
encoding for labels and has hierarchical motion integrator (MI - 3).
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Figure 3: Comparison with previous conditional state-of-the-art methods on the NTU-
RGB+D dataset.

Evaluation on foreground only To further compare the effects of the various components
in our proposed method, we evaluate the metrics for the foreground region only. The NTU-
RGB+D dataset provides the ground truth skeletal data which can be used for cropping out a
region around the actor. Since our videos have large static background, it becomes harder to
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Figure 4: Generating videos using our method on the Synthetic dataset for all 6 synthetic
classes move right to left, move left to right, move down to up, move up to down, split and
move apart, merge together.

evaluate the difference between different network components as most of the region seems
realistic. To remedy this, we crop the foreground region and compute all scores on it. The
score is reported in Table 9. The computations for various ablation is done in a lower spatial
dimension.

Demonstration of various network components We visualize the effect of various net-
work components used in LARNet full model in Figure 2. We show how the generated
video differs with addition on each component in the network. First we show video gen-
eration with only one motion integrator denoted by LARNET −MI− 1, where the video
tries to imitate first frame and has very little motion. This makes the video look sharp but
it has no movement. Then we show the effect of using three motion integrators denoted by
LARNET −MI−3, where the video has blurry motion. We then show how adding each loss
term improves the generated video, with the final model having LARNet +[Lv

madv,L
m
adv] and

giving the best generated video.

Qualitative Results We provide more qualitative results from our method on the UTD-
MHAD [2] dataset in Figure 6.
We provide more qualitative results from our method on the Synthetic dataset in Figure 4.
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Basenet - 1 MI

Figure 5: Ablation to study the effect of hierarchical motion integrator (MI) on the base
version of LARNet. We show the difference between using only the Basenet-1 and adding
the hierarchical motion integrator MI with the Basenet-1 (NOT FULL NETWORK) on
NTU-RGB+D dataset. Row 1: stand up, Row 2: salute, Row 3: stand up, Row 4: stand up,
Row 5: hand waving, Row 6: put on a hat cap.

Approach FID ↓ FVD ↓ PSNR ↑ SSIM ↑
LARNetMI−3 144.67 9.67 31.84 0.900
+Lm

adv 145.29 9.79 30.86 0.923
+Lv

madv 143.57 8.66 33.45 0.945

Table 9: Ablation scores for NTU-RGB+D dataset on foreground region only.

We provide more qualitative results from our method on the NTU-RGB+D dataset in Figure
1.
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