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S1 Detection accuracy and computations of all published
pedestrian detectors

Table S1 summarizes detection accuracy and computations measured by FLOPs of the latest
published pedestrian detectors evaluated on the Citypersons reasonable validation dataset, on
the original image size (2048 x 1024 px). Lower MR 2 indicates higher detection accuracy.

Table S1: Pedestrian detectors benchmark on Citypersons validation dataset. Detectors
marked in bold are Pareto-efficient according to empirical findings in Figure 1 (main text).
For models with published code FLOPs were directly measured, otherwise estimated us-
ing the Pedestron framework. The following backbone acronyms were used: MobileNet-
V1(MV1); MobileNet-V2(MV?2); ResNet-50(RN50); ResNet-50(RN101).

Detector Measured? GFLOPs MR ? |
ALFNet (MV1) v 171 15.45%
RepLoss (RN50) X 183 14.6%
IPedestron (MV2) v 262 10.24%
APD (DLA34) v 283 9%
PedHunter (RN50) X 409 8.32%
Pedestron (HRNet) v 597 7.6%
CSP MV1) v 352 15%
ALFNet (RN50) v 377 12.01%
CrowdHuman (RN50) X 409 10.67%
CSP (RN50) v 657 11%
IACSP (RN101) v 731 7.63%
Citypersons (VGG16) X 867 14.6%
AdaptiveNMS (VGG16) X 867 11.9%
OR-CNN (VGG16) X 867 12.8%
PSC-Net (VGG16) X 867 10.5%
MGAN (VGG16) X 894 11.3%
One-and-half (RN50) N/A N/A 8.12%
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S2 BLT-net architecture
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Figure S1: The input image is processed in the first-stage by a lite CNN with a high sensitiv-
ity to filter background regions. Resulting proposals are marked in dotted green rectangles.
It is worth noticing that the scale and localization of detections at this stage are not perfect.
Proposals are then padded (ROIs) and merged by the PCMAD algorithm. Based on the re-
sulting mROIs, image crops are taken from the original image and further downscaled by
the PCMAD algorithm, resulting the image crops with yellow margins. In this example the
two left detected pedestrians were merged into a single mROI. The three right proposals are
only donwscaled. Overall all image crops are downscaled to the same height and fed into the
accurate second-stage detector for precise detections (marked with red rectanges). Figure
best viewed in color.
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S3 The CascadeMV?2 net architecture
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Figure S2: The CascadeMV?2 architecture is based on concepts previously described [1, 2].
Feature maps at 1/2, 1/4, 1/8 and 1/8 of the input resolution are taken from the MobileNetV2
backbone. Some feature maps are further processed using depth-wise convolutions (DW; for
reducing computations) to change their number of channels. Feature maps are then processed
by aregression and confidence head, described in the yellow rectangle. First-step predictions
are fine-tuned by the second-step head, that uses an identical design. The confidence score
of the predicted bounding box and its values are taken solely from the second head. All
predictions are then filtered using a NMS algorithm.
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S4 The C&S net architecture
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Figure S3: C&S net processes images using a shallow branch and a deep branch. The
numbers in parentheses denote the output spatial sizes relatively to the original image size.
The cascade feature fusion block (CFF) and additional implementation details regarding the
blocks used in the shallow deep branches can be found in [3].
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S5 First-stage resulting relative processed area
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Figure S4: M/N (relative processed area) distribution per image for the Citypersons valida-
tion reasonable dataset, when using C&S net (top row) or CascadeMV?2 net (bottom row)
for the various evaluated pedestrian detectors. Red/blue colors depict the N/M distributions
with/without applying the PCMAD algorithm. The / parameter indicates the specific heights
image crops (based on the calculated mROIs) were downscaled to before applying on them
the second stage detector.
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S6 BLT-net additional misses

In this section we show all additional misses of BLT-net when using C&S net in the first-
stage and Pedestron (HRNet) in the second-stage. Overall, BLT-net achieved a MR~ lower
by 1.79%. All additional misses resulting from the first-stage only are shown in Figure
S5 and all additional misses resulting from the second-stage only are shown in Figure S6.
These results show that misses from both stages are characterized by small and/or poorly
illuminated or occluded pedestrians.

Figure S5: All first-stage additional misses for the Citypersons validation reasonable dataset,
with respect to Pedestron (HRNet) applied on the entire image. The first-stage was imple-
mented using the C&S net. Small bare and/or poorly illuminated pedestrians are labeled
with (A) while partially occluded pedestrians are labeled with (B). All image crops have the
same resolution and misses are marked with a red bounding box. The relative crop size with
respect to a full image is shown in the top row.
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Figure S6: All second-stage additional misses for the Citypersons validation reasonable
dataset, with respect to Pedestron (HRNet) applied on the entire image. The second-stage
detector was implemented using the Pedestron (HRNet) detector. Small bare and/or poorly
illuminated pedestrians are labeled with (A) while partially occluded pedestrians are labeled
with (B). All image crops have the same resolution and misses are marked with a red bound-
ing box. The relative crop size with respect to a full image is shown in the top row.
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