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1 Supplementary Video

Please see the video with audio submitted alongside this pdf. In the video, we show results
on the GTAV dataset corresponding to Fig.3 in the paper as sequences. We also compare with
static keypoints-based SLAM [5]. These results show that our method successfully birdifies
views in very crowded scenes. In contrast, static keypoints-based SLAM fails due to severe
occlusions induced by pedestrians on the background which demonstrates the brittleness of
the static background assumption in typical view birdification scenarios.

2 Energy Function

2.1 Pedestrian Interaction Models

In Section 4, we formulated view birdification as an iterative energy minimization problem
that consists of a pedestrian interaction model p(x,|X{*!) and a likelihood p(z|x}, Ax})
defined by the geometric observation model with ambiguities arising from human height
estimates (Eq. (5)). Our framework is not limited to a specific pedestrian interaction model,
and any type of model that explains pedestrian interactions in a crowd can be incorporated.
In the following, we consider two example models with a temporal window of 7 = 2.

Constant Velocity. ConstVel [60] is a simple yet effective model of pedestrian interactions
in a crowd which simply linearly extrapolates future trajectories from the last two frames

PO XY ~exp [l — 2007 + X771 (1)

The model is independent of other pedestrians and the overall pedestrian interaction model
can be factorized as p(X! | X1 F 1) = TIK | p(xt|X~**~"). The energy model &, is

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.


Citation
Citation
{Mur-Artal and Tardós} 2017

Citation
Citation
{Sch{ö}ller, Aravantinos, Lay, and Knoll} 2020


2 NISHIMURA, NOBUHARA, NISHINO: VIEW BIRDIFICATION IN THE CROWD

rewritten as
K

Z mnmﬂz’l+2—mpMﬁAf> (2)
k=1 k=1

Social Force. The Social Force Model [2] is a well-known physics-based model that simu-
lates multi-agent interactions with reciprocal forces, which is widely used in crowd analysis
and prediction studies [4, 8]. Each pedestrian k with a mass my, follows the velocity dx/dt>

—5 =F=F,(x;)+F.(Ac), 3)

where F is the force on x; consisting of the personal desired force F ), and the reciprocal
force F,. The personal desired force is proportional to the discrepancy between the current

velocity and that desired
1 dxk
Fp(xk) n (wkdt> 4

where wy, denotes the desired velocity which can be empirically approximated as the average
velocity of neighboring pedestrians i € N'(x;) [4].

The form of reciprocal force F, can be determined by the set of interactions between
pedestrian nodes x; € X;. To reduce the complexity of optimization, we approximate multi-
human interaction F,(X¢) with a collection of pairwise interactions F,(x;,x;). We assume
a standard Gaussian potential to simulate the reciprocal force between two pedestrians

1 i — x>
Fr(xi7xk): -V (Wexp |: 202k :|> . )

Without loss of generality, we omit my, as my = 1, assuming that the mass of pedestrians
in a crowd is almost consistent. Taking the last two frames as inputs, the complete pedestrian
interaction model becomes

P(X | X 6)

NHWPV %ﬂlpmwF -

k 2
dt l k EXC

Taking negative log probabilities, the overall energy model in Eq. (6) becomes

p—Zmax”’ﬂkZ%k ), @)
(l k)GXC

where the unary term and pairwise terms are

d
Dutx) = [t~ T2 | - (e ). ®

Vie(x},x;) = F(x},x}) , ©)

respectively.


Citation
Citation
{Helbing and Molnar} 1995

Citation
Citation
{Mehran, Oyama, and Shah} 2009

Citation
Citation
{Van Denprotect unhbox voidb@x protect penalty @M  {}Berg, Guy, Lin, and Manocha} 2011

Citation
Citation
{Mehran, Oyama, and Shah} 2009


NISHIMURA, NOBUHARA, NISHINO: VIEW BIRDIFICATION IN THE CROWD 3

Sim Hotel Univ Students
N =
\ s z- " by d
A ‘\.| ,/\»"'é £ ;
p AR e Al
_____ r\_"—_‘.,J""'-g:, a3
P R REEEEE SR,
———— AR ;7~=1< =y
7

Figure 1: Typical example trajectories. Typical example trajectories from the datasets
Sim, Hotel, Univ, and Students. In the Sim Example, the red triangle is the virtual camera
that observes projected pedestrians on the image plane, where dashed gray lines denote the
projection.

2.2 Implementation Details

We use the validation split of each crowd dataset [3] to find the optimal hyperparameters of
the pedestrian interaction models. We set the weight parameter of the desired force F, to
1 = 0.5, and the variance of the Gaussian potential to > = 1.0 for the social force model. For
each dataset of simulated and real trajectories, the size of the ground field, where pedestrians
are walking from starting points to their destinations, are scaled to [—8.0,8.0] m. We also
assume that the initial positions of pedestrians x,fl and xZIH for time t = 71, 7] + 1 are given

T 427 T +2
X, ={x/"",..

a priori, and the positions at the next timesteps . ,x,fz} are sequentially

estimated based on our approach.

3 Dataset Details

3.1 Example Trajectories

Fig. 1 visualizes typical example sequences from the synthetic dataset referred to as Sim
and from the real trajectory dataset referred to as Hotel, Univ, and Students. In all of these
datasets, a virtual observation camera is assigned to one of the trajectories and the observer
captures the rest of the pedestrians in the sequence. Fig. 2 shows example trajectories of
the GTAV dataset. The size of the ground field, where pedestrians are walking from starting
points to their destinations, is configured to be 20m x 40m. We spawned 50 pedestrians
starting from one of the four corners of the field, [-10,—10],[10, 10], [10,—20],[10,20], and
set the opposite side of the field as their destinations. Both the starting points and destinations
were randomized with a uniform distribution. In the GTAV dataset, an observation camera
is mounted on one of the pedestrians walking in the crowd flow and we can obtain pairs of
ground-truth trajectories and ego-centric videos with 90° field -of-view via Script Hook V
APIs [7].

3.2 Statistics of the Dataset

In this paper, we constructed several datasets consisting of synthetic pedestrian trajectories
(Sim), real pedestrian trajectories (Hotel, Univ, Students), and photorealistic crowd simu-
lation (GTAV). These datasets are designed differently in several aspects (i.e., densities of a
crowd, synthetic view or not, synthetic or real interaction models) for evaluation studies of
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GTAV Trajectory

Figure 2: Example Trajectories from the GTAV dataset. (Left) Pedestrians are spawned at
one of the four corners of the field. (Center) Pedestrians walking towards their destinations
while avoiding collisions. (Right) Trajectories of each pedestrian in one sequence.

Table 1: Overview of birdification dataset. For real trajectories, we selected scenes of
Hotel, Univ, and Students by taking into account the number of people in the crowd. “Seq."
corresponds to all the frames captured by a moving observer. “Len." denotes the number of
frames included in one sequence.

Dataset eq. Len. People in Crowd Int. observer input height occluded
Total Avg Min Avg Max model view bboxes variances  pedestrians
Sim 500 20.0 10 — 50 synthetic synthetic given v
Hotel 340 15.0 3 6.31 15 real synthetic given v
Univ 346 14.4 3 9.29 26 real synthetic given v
Students 849 4538 13 442 75 real synthetic given v
GTAV — 400 3 6 12 synthetic photorealistic MOT [9] v

our proposed view birdification method. Table 1 summarizes the statistics and taxonomy of
these datasets.

3.3 Quantitative Results on GTAV dataset

In Section 5.2 of the main text, we omitted quantitative results on the GTAV dataset due
to space limitations. Table 2 shows quantitative results on the GTAV dataset with metrics
introduced in Sec.5.2 in the manuscript. As introduced in the paper, we prepared two ver-
sions of inputs, one manually annotated with centerlines of the people and their heights and
the other with those automatically extracted from a multi-object tracker (MOT). We com-
pared view birdification results using these two different inputs, which are referred to as
Birdify-CLine and Birdify-MOT. The results show Birdify-CLine and Birdify-MOT achieve
comparative performance in terms of rotation and translation errors, Ar, At since the localiza-
tion of the observer is insensitive to pedestrian detection errors. On the other hand, in terms
of pedestrian localization errors, AX and Ax, Birdify-MOT results show inferior performance
to manually annotated inputs. This is mainly due to the fact that we currently estimate the
initial position of a pedestrian xg relative to the observer position x{, by Eq. (1) in the main
text, whenever a new pedestrian appears in a frame. The accuracy of this initial estimate can
be improved by fine-tuning the multi-object tracker or by using the pose of the person [1, 10].
We will explore these in future work.


Citation
Citation
{Wang, Zheng, Liu, and Wang} 2020

Citation
Citation
{Bertoni, Kreiss, and Alahi} 2019

Citation
Citation
{Xiu, Li, Wang, Fang, and Lu} 2018


NISHIMURA, NOBUHARA, NISHINO: VIEW BIRDIFICATION IN THE CROWD 5

Table 2: Birdification results of real trajectories. The relative and absolute localization er-
rors of pedestrians, AX and Ax, respectively, and the errors of camera ego-motion estimation,
Ar , and At, computed for each frame whose mean values are shown.

Input Ar[rad] At[m] AX[m] Ax|[m]
cline(manual) 0.015 0.097 0.441 0.491
MOT [9] 0.016 0.101 0.491 0.530

4 Failure Cases

We also analyze failure cases of our view birdification to understand the limitations of the
method. For this, we picked sequences from Univ data that showed a high error rate in terms
of camera localization.
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Figure 3: Visualization of posterior distributions of the Univ dataset. (First and third
rows) Ground truth trajectories of the camera and its surrounding pedestrians. (Second and
fourth rows) Visualization of posterior distributions of the location of the observer x{, and
surrounding pedestrians x;. The heatmaps correspond to low (blue) to high (red) probabili-
ties.

4.1 Visualization of Posterior Distributions

Fig. 3 visualizes posterior distributions of the observer location p(x}| 2} ., X4 !) and sur-
rounding pedestrians fxBeXSp(Xf:K|Zf:K,x6)p(x6)dx6 by sampling x{, € X in Eq. (4) and
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Eq. (5) in the manuscript, respectively. The first and third rows depict the ground truth tra-
jectories of the camera and pedestrians from ¢ to # +9. The number of pedestrians changes
from K =3 to K = 5. The second and fourth rows visualize the posterior distributions for
each of those two rows. As can be observed in the posteriors shown in the second row, the
estimated observer location becomes a heavy-tailed distribution when the number of pedes-
trians in the crowd is small (K = 3). In contrast, as shown in the fourth row, the posterior
distribution becomes sharper when the crowd is denser (K = 5). The ambiguity of localiza-
tion increases when pedestrians walk almost parallel to the observer (e.g., timesteps t =t +2
and 7 4 3). In contrast, the posterior distribution becomes sharp again when the camera ob-
serves more pedestrians walking in diverse directions. Moreover, when the camera observes
a large number of pedestrians that conforms to a known crowd motion model, whether or
not the camera motion is consistent with dominant crowd flow, the camera ego-motion es-
timates highly depend on the observed crowd movements and are less sensitive to assumed
ego-motion model. That is, as long as the camera observes a sufficient number of pedestrians
walking in diverse directions, our method can successfully birdify its views.
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