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1 ATN-based Models
We apply ATN to three typical high-dimensional optimization tasks: tensor completion, im-
age denoising, and neural network compression. These optimization problems are mainly
based on the low-rank assumption of the data. In other words, they aim to capture the intrin-
sic structure inside high-dimensional data and to eliminate redundancy through the low-rank
representation.

1.1 Tensor completion
Tensor completion (TC) aims to obtain complete data by imposing low-rank constraints on
the observed entries [3]. The general TC methods can be divided into two categories [8],
rank-minimization-oriented and TD-oriented. Rank-minimization-oriented methods transfer
tensor rank optimization into a matrix nuclear norm minimization by convex relaxation and
matrixization. TD-oriented methods express data as the connection of a few factors in a
multilinear space and maintain low-rank properties implicitly via the edge rank. Therefore,
the TC problem can be expressed as:

min
XXX

LLL(XXX ) = R(XXX )+ λ

2
||PΩ(XXX −YYY)||2F , (1)

where the XXX and YYY ∈ RI1×···×IN are restored low-rank tensor and incomplete observing ten-
sor, PΩ is a projection operator that maps elements in the set Ω ⊂ [I1]×·· ·× [IN ] (observed
elements index) to itself and others to zero, and R(·) represents a certain low-rank restrain.
We express XXX in the form of ATN and remove all the rank-1edges since they have no sub-
stantial contribution to the contraction result. Then the following minimization problem can
be deduced from (1) as follows:

min
{ZZZ(i)}Ni=1

LLL({ZZZ(i)}N
i=1) = ||PΩ(T N(ZZZ(1), . . . ,ZZZ(N))−YYY))||2F (2)
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The optimization problem LLL is differentiable and the variational parameters can be up-
dated iteratively based on the gradient descent algorithm, given byZZZ(i) =ZZZ(i)−η

∂LLL
∂ZZZ(i) . We

can obtain the reconstructed tensor XXX = PΩ(YYY)+P
Ω
(T N(ZZZ(1), . . . ,ZZZ(N))) after LLL stops de-

creasing, where Ω denote missing entries’s indices set. The selection of hyperparameter κ

has a significant impact on model performance. When the data missing ratio is relatively
large, we suggest adopting a smaller κ to prevent overfitting.

1.2 Image Denoising
The intention of image denoising [7] is to recover the original feature from the image con-
taminated by various noise. We reshape the image into a high-order tensor and apply
ATN decomposition to solve the denoising problem. For a given contaminated data tensor
XXX ∈ RI1×···×IN can be separated as [4] XXX = LLL0 +NNN 0, assuming that LLL0 is low-rank tensor
andNNN 0 is a small perturbation tensor. So we can depict the denoising optimization problem
as:

min
LLL0,{ZZZ(i)}Ni=1

||LLL0−T N(ZZZ(1),ZZZ(2), . . . ,ZZZ(N))||2F

s.t. XXX =LLL0 +NNN 0.

(3)

The (3) is solved by utilizing the gradient descent strategy, which is consistent with (2). Al-
though TC and denoising are different types of tasks, they are based on the internal low-rank
assumption of the original data, and derived optimization items are similar. Further, we can
describe a class of low-rank optimization problems in a unified framework. To decompose
Nth-order tensor XXX ∈ RI1×···×IN with ATN and obtain T N(ZZZ(1),ZZZ(2), . . . ,ZZZ(N)), then the
unified optimization form can be expressed as:

min
{ZZZ(i)}Ni=1

LLL(XXX , T N(ZZZ(1),ZZZ(2), . . . ,ZZZ(N)))+λζ (κ). (4)

Where the LLL(·) represents optimization objective likes structural loss and ζ (·) indicates prior
assumptions or complexity constraints of the model, λ is hyperparameter used to trade-off
the two items and can be adjusted according to actual results. It explicates that we can
employ ATN to more low-rank problems based on TD, such as neural network compression.

1.3 Neural Network Compression

Figure 1: Illustration of standard convolution (top) and ATN-based convolution (bottom).
The convolution process can be intuitively represented in the form of a tensor network.

Convolutional neural networks (CNNs) can be compressed through ATN decomposition
to favor the development of mobile devices. For the input feature map FFF with size W ×
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H×Cin, where W,H,Cin denote the width, height, and the number of channels, respectively.
The standard convolution utilizes a filter WWW of the size K ×K ×Cin ×Cout to act on FFF ,
where the K,Cout are the kernel size and the number of output channels [2]. We graphically
illustrate the convolution process through TN as shown in Fig.1. The filterWWW acts on the
local receptive field tensor of the feature map FFF l , and obtains a tubal of the output feature
map by contracting three shared indexes. We decompose filter WWW with ATN and obtain
four cores factors {ZZZ(1),ZZZ(2),ZZZ(3),ZZZ(4)}. The parameters and FLOPs of the ATN-based
convolution are directly controlled by the edge rank R. The larger R is, the more computing
resources are required.

We achieve an ATN-based convolution with the fully optimized Conv2d function in Py-
Torch [6]. The ATN rank was previously calculated through pre-trained model weights.
First, the pointwise convolution (standard convolution with K=1) applies toFFF and the num-
ber of output channels is R12×R13×R14. Then the group convolution are performed (each
group uses the same convolution kernel) with a group size R12 and a kernel of the size 1×K,
so the number of output channels is R13×R14×R23×R24. After that, we use the channel
shuffling [5, 9] strategy to change the order of contract indexes. Then we use another group
convolution with group size R14×R24 and kernel size K× 1 and get the number of output
channels R13×R23×R43. Finally, another pointwise convolution is employed to obtain the
output feature map. Reference [1] has enumerated the possible decomposition methods of
the filters, but the size of the filter in each convolution layer is different and the edge rank
is usually determined by handcraft. The layer-wise search decomposition is costly, and the
implementation steps are inefficient.The ATN-based convolution filter decomposition can
automatically select the edge rank according to the model capacity and has stronger robust-
ness.

2 Numerical Experiments

Besides the above three tasks, the tensor decomposition task is also used to demonstrate that
ATN can well capture the low-rank structure of data with less storage complexity. The test
data is the same as the image denoising task, i.e. including 2 RGB color images Img1 and
Img2 (both reshaped to the size of 8× 8× 8× 8× 3 ) and 2 videos Vid1 and Vid2, each
composed of 32 frames (reshaped to 8× 4× 8× 8× 8× 8× 3). We carefully adjusted the
rank of other TD models to make their compression ratio r as close as possible. Table 1
reports the evaluation indicators of four TD models under similar compression ratios. It can
be seen that ATN obtains better results even with larger r on video1, where the RSE is 0.09
lower and the PSNR is 1.7 higher than TR. The TN topological structure of four tensors
obtained by ATN is presented in Fig. 2. One vertice corresponding to the channel mode
(upper right corner in Fig. 2) is not connected with others, which indicates the Img1 channel
features are weakly correlated with spatial features. This experiment shows that ATN has
better data approximation ability than other models.

3 Proof of Theorems

Theorem 1 Let Nth-order tensor XXX ∈ RI1×···×IN and I1 = · · · = IN = I. The multilinear
tensor rank is denoted by (rank(XXX (1)), · · · ,rank(XXX (N))), where XXX (k) is mode-k matircization
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Table 1: Comparison of RSE and PSNR values on four tensors after decomposition via
different TD models.

TUCKER TT TR ATN

r RSE PSNR r RSE PSNR r RSE PSNR r RSE PSNR

Img1 10.6 0.255 19.7 10.9 0.195 22.1 9.75 0.123 26.1 10.6 0.101 27.8
Img2 10.6 0.205 22.5 10.9 0.150 23.2 9.75 0.112 25.7 12.4 0.102 26.6
Vid1 10.6 0.183 20.1 9.68 0.074 27.8 10.7 0.051 31.1 13.4 0.042 32.8
Vid2 10.6 0.328 17.2 9.68 0.191 21.9 10.7 0.175 22.7 9.56 0.114 26.4

Figure 2: Illustration of four tensors decomposed by different TD models and the corre-
sponding topological structures of ATN. The first two images in column one are Img1 and
Img2, and the last two images are the 1-st frame of Vid1 and Vid2.

ofXXX , then the following inequalities holds for i = 1, · · · ,N:

min{N−1,rank(XXX (i))} ≤
N

∑
j=1, j 6=i

rank(XXX (i, j))≤ (N−1)rank(XXX (i))

max{rank(XXX (i, j))}N
j=1, j 6=i ≤ rank(XXX (i))≤ I(

∑
N
j=1, j 6=i rank(XXX (i, j))

N−1
)N−2.

(5)

Proo f . The mode-i matircization ofXXX is denoted by XXX (i) ∈R
Ii×

N
∏

j=1, j 6=i
I j

and satisfy rank(XXX (i))=

rank([X (1)
(i, j), · · · ,X

(
N
∏

k=1,k 6=i, j
Ik)

(i, j) ]). According to the definitions of generalized tensor rank, we
can obtain rank(XXX (i, j))≤ rank(XXX (i)), for j 6= i, then the above inequalities can be easily ob-
tained. In addition, for the case of Ii� I1 = · · · Ii−1 = Ii+1 · · · IN = I, the lower inequality still

holds since rank(XXX (i))≤
I(

N
∏

j=1, j 6=i
rank(XXX (i, j))

max{rank(XXX (i, j))}Nj=1, j 6=i
≤ I(

∑
N
j=1, j 6=i rank(XXX (i, j))

N−1 )N−2.

Theorem 2 For Nth-order tensor XXX ∈ RI1×···×IN and Mth-order tensor YYY ∈ RIN+1×···×IN+M ,
let ZZZ = XXX ◦YYY , The generalized tensor rank of ZZZ(n,m) is equal to 1 consistently for any
1≤ n≤ N,N +1≤ m≤ N +M.

Proo f . The element-wise form ofZZZ(n,m) ∈ R
In×Im× ∏

j 6=m,n
I j

is given by:

ZZZ(n,m)(in, im, i1 · · · in−1in+1 · · · im−1im+1 · · · iN+M) =XXX (i1, · · · , iN)YYY(iN+1, · · · , iN+M). (6)
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The k-th frontal slices ofZZZ(n,m), for 1≤ k≤ ∏
i6=n,m

Ii, denote as ZZZ(k)
(n,m)
∈RIn×Im , then we have

ZZZ(k)
(n,m)

=XXX (i1, · · · , in−1, :, in+1, · · · iN)◦YYY(iN+1, · · · , im−1, :, im+1, · · · iN+M), (7)

where the k = 1 +
N+M

∑
l=1,l 6=n,m

(il − 1)
l−1
∏

t=1,t 6=n,m
It . That indicate each frontal slices of ZZZ(n,m)

can be expressed as outer product of a mode-n fibers in XXX and a mode-m fibers in YYY , so
rank(ZZZ(n,m)) = 1 is always established.

Theorem 3 Let Nth-order tensor XXX ∈ RI1×···×IN and 1 < I1 ≤ ·· · ≤ IN . Under a certain κ ,
the number of parameter’ upper bound and computational complexity of ATN decomposition
is ∑

N
i=1(∏

i
j=1 I j)IN−i

i κN−1 and O(∑N
j=2(κ

j(N− j)+ j−1
∏

j
i=1 IN− j+1

i )/I j).

Proo f . Assuming thatXXX can be decomposed by ATN and obtainZZZ(K) ∈RR1,k×···×Rk−1,k×Ik×···×RN,k

for k ∈ [N]. According to the definition of R(i, j), we have Ri, j ≤ κIi for 1≤ i < j ≤ N. Then
the upper bound of the number of parameters required is ∑

N
i=1(∏

i
j=1 I j)IN−i

i κN−1. The com-
putational complexity of ATN is mainly generated by N−1 tensor contraction, and the k-th
contraction can represent with the multilinear operation form as:

XXX k =XXX k−1×R1,k+1,··· ,Rk,k+1ZZZ
(K+1), (8)

whereXXX k−1 is size of I1 · · · IkR1,k+1 · · ·R1,N · · ·Rk,k+1 · · ·Rk,N and×R1,k+1,··· ,Rk,k+1 denote sum-
mation in the indexes represented by R. The computational complexity of (8) is

O((
k

∏
m=1

Rm,k+1)(
k+1

∏
i=1

Ii(
N

∏
j=k+2

Ri, j)))≤O((
k

∏
m=1

κIm)(
k+1

∏
i=1

Ii(
N

∏
j=k+2

κIi)))

≤ κ
(k+1)(N−k−1)+k

k+1

∏
i=1

IN−k
i )/Ik+1

(9)

Therefore, we can obtain the computational complexity of ATN isO(∑N
j=2(κ

j(N− j)+ j−1
∏

j
i=1

IN− j+1
i )/I j).
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