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A Analyses on the estimation of ε

In order to investigate the influence of estimation precision of noise rate ε on the final per-
formance, we do some experiments that set ε as a fixed value during different iterative steps,
and the result is showed on Figure 5(b) and 5(c). From Figure 5(a) we know the ground truth
noise rate in VisDA-2017 task is 0.485, and Figure 5(b) shows a fixed ε of value 0.3, 0.4,
0.5 can obtain similar good results, which means IterLNL is robust under the situation that
estimated noise rate is not fairly precised. When the estimation error go larger, performance
goes down. Using estimated ε , IterLNL achieve the same results as the best result of setting
fixed ε on VisDA-2017 task (see Figure 5(b)) and better results on M→U task (see Figure
5(c)), showing that our noise rate estimation method is reliable.

B More analyses on balancing different categories
We propose the category-wise sampling to tackle the unbalanced label noise, i.e., promoting
the prediction balance among different categories, and verify its efficacy in Table 3. We also
note that existing methods [1, 2] (cf. Equation (3) in [1] and the appendices in [2]) typically
promote the prediction balance among categories with a global diversity loss, which aims to
assign target samples to each class equally:

Lgd(F,T ) =
K

∑
k=1

p̄k log p̄k, (1)

where p̄k is k-th element of p̄, p̄ = E[F(xxxt
i)], and xxxt

i indicates the selected sample in each
training batch. Minimizing Lgd leads to more balanced model predictions among categories.

As illustrated in Table B1, both category-wise sampling and the global diversity loss
alleviate the problem of unbalanced category predictions and the proposed category-wise
sampling largely outperforms the global diversity loss in terms of category-wise mean accu-
racy (e.g., from 79.0% to 83.1%). We also find that combining the category-wise sampling
and the global diversity loss results in boosting results, showing the effectiveness of our
proposed category-wise sampling strategy.
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IterLNL (w/o CateS) 95.6 87.2 86.0 90.0 96.9 0.0 93.7 51.2 93.3 88.1 87.4 0.0 72.4 75.6
IterLNL 96.2 86.6 81.8 76.8 95.6 0.0 92.0 87.2 93.6 87.9 90.0 59.9 79.0 81.3
(+Lgd , w/o CateS)
IterLNL 88.7 83.4 78.3 67.7 91.4 87.6 91.8 79.5 86.2 86.7 78.7 77.2 83.1 81.2
IterLNL (+Lgd ) 90.0 87.2 77.8 63.3 93.1 90.6 90.8 87.1 88.7 90.6 81.1 76.7 84.8 81.8

Table B1: Ablation study on VisDA-2017 dataset (ResNet-101).

C Comparison with Self-training
As we discussed in Section 3.3, self-training is proposed for tasks with labeled and unlabeled
training data and could not be directly applied to the B2UDA task, where only unlabeled (or
noisy labeled) data are available. However, given the seemly similar solutions between our
IterLNL and the popular self-training, we also try our best to adapt the self-training methods
for the B2UDA task. Specifically, given unlabeled target samples and their noisy labels,
we first warm up the target model with supervised classification loss by using the noisy
labels as clean ones; then we start self-training based on the warmed-up model by achieving
noisy labels from model predictions of high confidence. As illustrated in Table C1, our
IterLNL significantly outperforms the self-training on tasks of S→M and A→W, justifying
the efficacy of our proposed IterLNL. Note that our IterLNL is significantly different from the
self-training: samples with high prediction confidence are directly used for model training in
self-training while LNL methods and our IterLNL use samples to learn models only if their
current model predictions are consistent with the given noisy labels.

Methods S→M A→W
Self-training 93.6±0.3 84.0±0.5
IterLNL 97.7±0.1 92.2±0.0

Table C1: Comparison of IterLNL and self-training.
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