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A Appendix
This supplementary document mainly contains the following:

1. Implementation details of our approach.
2. Details for our baselines.
3. Additional Ablation analysis of each component in our approach.
4. Robustness analysis of our approach under different perturbations.
5. Failure example visualization and analysis.

A.1 Implementation Details
We use PyTorch for implementation. Our model is trained on a NVIDIA TITAN P6000.
The input to the network is resized to 240× 427. The length of our video clips is set to
3 frames during training. To extract ELA frames, we recompress the corresponding RGB
frames by quality factor 50 and compute their difference. Our feature extraction backbone is
VGG-16 [9] for both RGB and ELA features. To increase the generalization ability, we add
instance normalization [11] layers to the backbone. The encoder is initialized from VGG-16
model pretrained on ImageNet [2] and the decoder is initialized by Xavier initialization [4].
We concatenate both RGB and ELA features up to the penultimate encoding layer. After-
wards, the features are passed into one convolutional and normalization layer to reduce the
dimension by half to reduce training parameters. The QDLA module is added to the last en-
coder layer to extract directional feature information. The decoder is a 4-layer ConvLSTM.
We use Adam [5] optimizer with a fixed learning rate of 1×10−4 for encoder and 1×10−3

for decoder. The optimizer of the encoder and decoder network are updated in an alternating
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(a) JPEG perturbation (VI*, OP*, CP)

(b) Noise perturbation (VI*, OP*, CP)

(c) CRF perturbation (VI*, OP*, CP)

Figure 1: Mean IoU comparison under different perturbations. Perturbation in JPEG com-
pression consists of the quality factor with 90 and 70; perturbation in noise consists of SNR
30dB and 20dB; perturbation in video CRF compression consists of the quality factor with 5
and 10. Column from left to right is the result on VI, OP and CP inpainting. ‘*’ denotes that
the model is trained on these inpainting algorithms.

fashion. To avoid overfitting, weight decay with a factor of 5×10−5 and 50% dropout [10]
are applied. Random horizontal flipping augmentation is applied during training. We train
the whole network end-to-end for 40 epochs with a batch size of 4.

A.2 Baseline Details
NOI [8]: A traditional approach which aims to find inconsistent noise region as the clue of
manipulation. The code for evaluation is from Zampoglou et al. [13]. We directly test on the
VI, OP and CP test set as it is unsupervised.

CFA [3]: An approach that estimates Camera Filter Array (CFA) and regards the region
with different CFA patterns as the manipulated region. We directly test on the VI, OP and
CP test set as it is unsupervised.

COSNet [7]: To compare with video segmentation methods, we compare VIDNet with
zero shot video segmentation method SOTA COSNet, which aligns with our setting. COSNet
is based on deeplab [1], and attends to the flow difference between frames to segment out
object.

HPF [6]: A learning based image inpainting detection approach that applies one high
pass filter layer as an initialization to reveal high frequency inpainting artifacts. We imple-
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VI* OP* CP
Methods IoU / F1 IoU / F1 IoU / F1

Ours ELA 0.460 / 0.578 0.509 / 0.631 0.417 / 0.546
Ours RGB (baseline) 0.552 / 0.671 0.456 / 0.580 0.493 / 0.625
Ours w/o QDLA 0.559 / 0.682 0.557 / 0.681 0.512 / 0.644
Ours RF edge 0.540 / 0.661 0.460 / 0.591 0.555 / 0.670
Co-Attention [12] 0.565 / 0.685 0.489 / 0.625 0.548 / 0.667
QDLA both features 0.555 / 0.680 0.580 / 0.700 0.495 / 0.635
VIDNet-IN (ours) 0.585 / 0.704 0.588 / 0.707 0.565 / 0.685

Table 1: Ablation analysis. The model is trained on VI and OP inpainting algorithms (de-
noted as ‘*’).

ment their filter kernel and train the network frame-by-frame from the ImageNet pretrained
weights for comparison. For fair comparison, we also adapt it with LSTM to consider tem-
poral information and report the LSTM version results.

GSR-Net [14]: A deeplab [1] based generic image manipulation segmentation approach
that applies generative models and exploits boundary artifacts to improve the generalization
ability. We use their released code and retrain on inpainted DAVIS frame-by-frame for eval-
uation. For fair comparison, we also adapt it with LSTM to consider temporal information
and report the LSTM version results.

A.3 Additional Ablation Analysis
We analyze the importance of each key component in our framework and the details are as
follows:

QDLA both features: Our full model except that the input to QDLA module is the con-
catenation of both RGB and ELA feature from the 5-th layer.

Ours RF edge: Following Chen et al. [1], we add additional edge branch and replace
QDLA with recursive filter to the final prediction. The output of edge branch is used as the
reference to recursive filter layer.

Co-attention [12]: We replace our QDLA module with contextual attention [12], which
is also designed to learn from adjacent regions.

Tab. 1 displays the comparison results. Compared to Ours RF edge, our full model which
contains QDLA module yields better performance because the boundary prediction degrades
in video inpainting scenario and thus edge map contains false positives to guide the segmen-
tation branch. Also, thanks to the disentanglement of four directions, our QDLA module
captures better adjacent artifacts than co-attention [12]. The result also shows that the high
level ELA features are less helpful than lower ones when comparing ours with QDLA both
features. Eventually, with QDLA module, ELA feature and temporal information, the per-
formance gets boosted further.

A.4 Robustness Analysis
To test the robustness of our approach under noise, JPEG and video compression perturba-
tion, we conduct experiments listed in Fig. 1. We add Gaussian noise to the input frame
with Signal-to-Noise Ratio (SNR) 30 and 20 dB and evaluate on these noisy frames, or re-
compress test frame with JPEG quality 90 and 70 for perturbation, or compress video under
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H264 constant rate factor (CRF) value 5 and 10. Moreover, to study the effect of specific
augmentation on performance, we apply noise and JPEG augmentation to our approach and
make comparison together. The details of our augmentation is as follow.

VID-Noise-Aug: Randomly apply Gaussian noise with SNR 20 dB to the input frames
during training.

VID-JPEG-Aug: Randomly apply JPEG compression with quality factor 90 to the input
frames during training.

The robustness of our approach stands out under different perturbations. Compared to
other approaches, HPF suffers more from perturbation because more high frequency noises
will be introduced. With generative models for augmentation, GSR-Net shows good robust-
ness. However, our approach outperforms GSR-Net as more modalities of video inpainting
clues have been considered. Even though adding noise augmentation yields a small degra-
dation on the original performance, the robustness to both noise and JPEG perturbation has
been improved. Similar observation is made on JPEG augmentation. Unsurprisingly, the
robustness of our method under video compression perturbation is also better than other
methods as more temporal features are utilized in our approach.

A.5 Failure Example Visualization and Analysis
We visualize some failure cases of our approach in Fig. 2. The failure cases could be sum-
marized as 1) Unusual inpainting ratio cases. It is expected to be improved by advanced
multi scale training methods. 2) The spatial discontinuity or multiple instances (The first
and second case in Fig. 2). It might due to the limited multi-instance samples in the training
set. 3) Noise in ELA features. As shown in Fig. 2 (the second case), the false positive is
likely to be caused by the noisy background in ELA frames.
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Figure 2: Failure case visualization on DAVIS. The first row shows the inpainted video
frame. The second row indicates the final predictions of our approach. The third row is the
ground truth.
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