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Abstract

This supplementary document provides implementation and experimental details com-
plementing those reported in the main paper. The contents are organized as follows:

• Section 1 describes the implementation details.

• Section 2 discusses the datasets and the evaluation metrics we adopted.

• Section 3 compares the performance of our model with that of Khoreva et al. [11]
on subgroups of DAVIS-16 videos which are organized based on their key charac-
teristics.

• Section 4 visualizes the differences in prediction results from several ablated ver-
sions of our model and complements our quantitative ablation study in Section 4.3
of the main paper.

• Section 5 discusses and compares the benefits and the downside of utilizing optical
flow in our architecture.

• Section 6 visualizes our prediction results on several video segments in which the
queried objects temporarily stay stationary.

• Section 7 visualizes prediction results on all of the four benchmark datasets.

1 Implementation details
During pre-training, we adopt batch size 24 and 50,000 training iterations with a standard
cross-entropy loss. The initial learning rate is 0.01 and follows a “poly” adjustment pol-
icy [2], where the initial learning rate is multiplied by (1− iter

total_iters )
0.9 at each iteration.

Network parameters are optimized via stochastic gradient descent with weight decay 0.0001.
To improve training speed and memory efficiency, we use mixed precision during training.
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The BERT model has a hidden size of 768, which corresponds to cs in Section 3.1 of the
main paper and is initialized with weights provided by Bellver et al. [1]. The official BERT
model was pre-trained using two unsupervised tasks, “masked language model” (MLM) and
“next sentence prediction”, with data from BookCorpus [26] (a dataset containing 11,038
unpublished books) and English Wikipedia (excluding lists, tables, and headers). Word-
Piece [21] with a 30,000 token vocabulary was used as the tokenizer. Bellver et al. [1]
further fine-tuned the model for one epoch with natural language expressions from the Re-
fCOCO dataset [25] using the MLM objective. Every input sentence is prepended with a
special token [CLS] and appended a special token [SEP] indicating the start and the end of
the sentence respectively.

We initialize ResNet-101 [7] with weights pre-trained on ImageNet [5] and randomly
initialize all other layers in our model (except BERT). The ASPP module follows the same
configuration as in [2]. It presents a total stride of 8 and the output channel number is 256,
which corresponds to c4 in Section 3.1 of the main paper. In addition, we set c1, c2, and c3
in Section 3.1 of the main paper to 48, motivated by the practice in [3], which sets a smaller
channel number for low-level and intermediate feature maps to prevent their outweighing the
importance of the high-level feature maps. We employ RAFT [17], a state-of-the-art deep
model for optical flow estimation.
Training. It is common practice for referring segmentation methods to first pre-train their
models on a large-scale dataset (e.g. RefCOCO [10], MSRA [4], Kinetics [9], YouTubeVOS
[16, 23], etc.) for bootstrapping purpose and then fine-tune them on the evaluation datasets [1,
6, 11, 16, 19]. We follow the same practice and pre-train our model on YouTubeVOS and
then fine-tune our model on DAVIS-16, DAVIS-17, and A2D for evaluation respectively.
During fine-tuning on DAVIS-16, DAVIS-17, and A2D, we adopt batch size 8, an initial
learning rate of 0.001 with the “poly” adjustment policy [2], and weight decay 0.0001, and
optimize network parameters via stochastic gradient descent. Following prior work on semi-
supervised VOS [18, 24], we only optimize the losses of the hardest 15% pixels. Similarly
to previous work [12, 19, 20], we use class-balanced cross-entropy loss with weight 0.9 for
the background class and weight 1.1 for the object class, which we found useful for compen-
sating for the object class as objects are usually much smaller than the background. Finally,
for DAVIS-16 and DAVIS-17, we clip the gradient norm to 1.0 during training, which we
empirically found important for stabilizing training. The model is trained for 10 epochs on
DAVIS-16 and DAVIS-17, and 20 epochs on A2D. During both pre-training and fine-tuning,
we resize each frame to the height of 480 pixels and then randomly crop a region of size
480× 480 pixels from the frame. Raw predictions are upsampled via bilinear interpolation
to the size of the ground-truth masks.
Inference. Each frame is evaluated at its original size. We take the argmax along the channel
dimension of the score maps as the predicted labels. When evaluating our method on DAVIS-
17, we adopt a simple strategy to combine the prediction results of multiple objects in a single
frame when conflicts arise. Specifically, the predicted mask of an object with a higher ID
number overrides that of an object with a lower ID number.

2 Datasets and evaluation metrics
Datasets. We evaluate the performance of our model on four datasets, DAVIS-16 [11, 14],
DAVIS-17 [11, 15], A2D [6, 22], and J-HMDB [6, 8]. The DAVIS-16 dataset annotates a
single foreground entity for each video and contains 30 videos for training and 20 videos for
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validation. The DAVIS-17 dataset annotates up to several objects per video and contains 60
videos for training and 30 videos for validation. Khoreva et al. [11] augmented the DAVIS-
16 and DAVIS-17 datasets with natural language expressions from human annotators for all
the original objects. For both DAVIS-16 and DAVIS-17, two expressions are provided based
on annotators’ observation in the first frame. For DAVIS-17, two more expressions are pro-
vided based on annotators’ observation throughout the whole video. We train our algorithm
on the training set and evaluate on the validation set. The Actor-Action Dataset (A2D) by
Xu et al. [22] is a benchmark dataset for the task of actor-action video segmentation. There
are 43 valid actor-action pairs. The original task of actor-action segmentation requires to
assign an actor-action class label (or a background label) to each pixel in each frame of the
input video. Gavrilyuk et al. [6] introduced the task of actor-action segmentation from a
natural sentence, and extended the A2D dataset with natural language descriptions of what
action an actor is performing in a video, leading to 6,656 sentences describing 6,656 target
objects. There are 3,036 videos for training and 746 videos for testing. We train our model
on the training set and evaluate on the test set. The Joint-annotated Human Motion Data
Base (J-HMDB) [8] is a fully annotated dataset for human actions and human poses. There
are 928 videos divided into 21 action classes. It provides pixel-level mask annotations in the
form of articulated human puppets. Gavrilyuk et al. [6] extended this dataset with 928 nat-
ural language expressions each describing what the actor is doing in each video. Following
previous work [13, 19, 20], we evaluate our method on all 928 videos from this dataset using
weights fine-tuned with A2D.

Evaluation metrics. On DAVIS-16 and DAVIS-17, we adopt the official evaluation met-
rics of mean region similarity J , which is the intersection-over-union of the prediction and
ground truth, and mean contour accuracy F , which is the F-measure defined on contour
points from the prediction and the ground truth. On DAVIS-17, we report performance un-
der two settings. The first is the standard setting which requires that no pixel be assigned
more than one object ID. The second setting is for fair comparison with URVOS [16], which
did not address potential overlaps in the predictions of multiple objects (therefore an easier
setting) and we refer to it as binary evaluation in Table 2 of the main paper. On A2D and
J-HMDB, we adopt the common metrics of overall intersection-over-union (oIoU), mean
intersection-over-union (mIoU), and precision at five threshold values. The overall IoU is
measured as the ratio between the total intersection area and the total union area of all test
samples (each test sample is a language query and a video frame). This metric favors large
objects. The mean IoU is the IoU between the prediction and ground truth averaged across
all test samples. This metric treats large and small objects equally. The precision metric
measures the percentage of test samples that passes a certain IoU threshold. We evaluate
precision at the common IoU thresholds of 0.5, 0.6, 0.7, 0.8, and 0.9.

3 Attribute-based performance on DAVIS-16

In Table 1, we provide an analysis of our method when evaluated on DAVIS-16 videos
assigned to different attribute groups. Our method achieves the best performance in most
attribute groups and is robust against a wide variety of challenging scenarios.
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Attribute AC LR SV SC CS DB BC FM MB DEF OCC

Khoreva et al. [11] 80.1 79.0 74.4 77.6 85.7 66.4 85.0 77.7 78.1 84.3 80.1
RefVOS(re-implement) [1] 68.3 67.2 67.2 64.5 79.7 48.5 89.3 63.7 66.5 71.2 68.2

Ours 85.1 88.3 83.3 77.1 92.3 69.2 90.3 82.6 80.7 83.7 84.7
Table 1: Attribute-based results (J ) on the DAVIS-16 validation set. AC: appearance
change. LR: low resolution. SV: scale variation. SC: shape complexity. CS: camera shake.
DB: dynamic background. BC: background clutter. FM: fast motion. MB: motion blur.
DEF: deformation. OCC: occlusions.

Hierarchical 
feature interaction 

without OF

Hierarchical feature 
interaction with OF 

(vision branch)

Hierarchical feature 
interaction with OF 

(motion gating branch)

Hierarchical feature 
interaction with OF 

(both branches) (ours)

Ground truth Single-level 
feature fusion 
without OF

Figure 1: We visualize the effects of our key contributions on examples from DAVIS-16.
From left to right, each column visualizes masks from the ground truth, model that employs
single-level feature fusion without utilizing any optical flow input, models that employ hi-
erarchical feature interaction only between language and vision features without any optical
flow input, with optical flow input only to the vision branch, with optical flow input only to
the motion gating branch, and with optical flow input to both branches, respectively.

4 Ablative qualitative analysis

In Fig. 1, we compare the different prediction results generated by models that employ only
single-level feature fusion and our hierarchical feature interaction scheme (both models do
not utilize any optical flow input); and then we demonstrate the effects of utilizing optical
flow input to the vision branch, to the motion gating branch, and to both branches, respec-
tively, under our hierarchical feature interaction scheme. It can be seen that hierarchical
feature interaction even without optical flow input generate fewer false positives and more
accurate masks compared to its single-level feature fusion counterpart. Moreover, when em-
ploying optical flow input either to the vision branch or to the motion gating branch helps
the model focus on the correct target object, which shows the advantage of utilizing motion
information. Finally, incorporating optical flow in both branches generate the best results,
which further shows that our two ways of utilizing optical flow complement each other and
are both necessary for achieving the best results.
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Negative effects of OF

Prediction 
with OF

Prediction 
without OF

OF magnitude 
input

RGB input

Positive effects of OF

Prediction 
with OF

Prediction 
without OF

OF magnitude 
input

RGB input

Figure 2: Incorporating optical flow for prediction have both positive and negative effects.
However, as discussed in the text of this section as well as demonstrated in Table 4 of the
main paper, the benefits of utilizing optical flow far outweighs the drawbacks.

5 The effects of optical flow

An important question is that if we employ optical flow for highlighting moving objects, then
how much does poor optical flow signals or static target object that has no motion signals
affect our predictions. We discuss the benefits and the downside of using optical flow in
our architecture with a few examples in Fig. 2. First of all, as can be seen in the first two
rows under “Positive effects of OF”, the main benefit for using optical flow is to complement
language for more accurate object localization. In many cases, as language referral is an
extremely challenging problem which we already know, the expression itself often generates
false positive or false negative predictions. These are the cases where optical flow magnitude
(computed after subtracting the mean vector) comes into play and helps correcting those false
positives or false negatives.

In some cases (the two rows under “Negative effects of OF”), incorporating OF produces
slight negative effects. In the first case, motion of waves causes the model to also segment
out water near the legs of the referent person. In the second case, due to large camera rotation
angles and the target being near to the camera, subtracting the mean vector cannot produce
decent separation result between the moving target and the static background. The messy
and uninformative optical flow magnitude image does not provide much helpful information
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and conversely includes many distracting signals. Even in this case, the prediction result
from incorporating optical flow is only slightly worse than that from the RGB-only model,
missing only small detailed parts of the motorbike and the biker. This shows that when
optical flow signals are of poor quality, our model can still rely on language to generate
decent predictions.

Finally, we want to clarify that the overall benefits of optical flow far outweighs its neg-
ative effects. There are two main reasons. First, consistent with the pattern shown in these
four examples, optical flow tend to make big improvements by correcting false positives or
negatives, and only introduce small errors in the cases where they are harmful. Second, in
all four benchmarks, the cases where optical flow plays a positive role far outnumber those
where optical flow negatively affect the prediction results. And this is due to the fact that the
queried target objects in videos are more often moving objects and it is also relatively easy
to separate their motions from the background by subtracting the mean vector from the flow
field.

6 Static objects

Query 1: “Parrot is jumping from the table.”

Predictions from the static model Predictions from the full model The optical flow magnitude images

Query 1: “Person climbing on the rock.”

Query 1: “Yellow cat at the bottom walking.”

Query 1: “A man in black is standing on the left and helping a girl.”

Figure 3: Predictions on a video segment in which the queried object is stationary. We
include predictions from the static model which only employs language as guidance for
comparison with predictions from our full model. When motion signals about the queried
object are missing, our model can still leverage language to locate the object and generates
similar or better masks compared with its static counterpart.

7 Qualitative evaluation on all benchmarks
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Query 1: “A boy riding a bmx bike and a bike.”

Query 1: “A man in red doing breakdance.”

Query 1: “A brown camel.”

Query 1: “A black car.”

Query 1: “A silver car.”

Query 1: “A black swan.”

Query 1: “A cow with a bell around its neck.”

Query 1: “A girl dancing.”

Query 1: “A golden retriever walking in the grass.”

Query 1: “A red and white car.”

Figure 4: Segmentation results on the DAVIS-16 validation set.
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Query 1: “A drift car on a straight road.”

Query 1: “A goat walking on rocks.”

Query 1: “A girl riding a horse and a horse.”

Query 1: “A man kite-surfing.”

Query 1: “A dog running in the garden.”

Query 1: “A man riding a motorbike in colorful biking gear and a motorbike.”

Query 1: “A man launching the paraglider.”

Query 1: “A man jumping across fences.”

Query 1: “A man riding a black scooter in suit and a black scooter.”

Query 1: “A blue wooden car and two men pushing it.”

Figure 5: Segmentation results on the DAVIS-16 validation set.
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Query 1: “A black bike.” Query 2: “A man wearing a cap.”

Query 1: “A red bmx bike.” Query 2: “A boy wearing a white tshirt.”

Query 1: “A white dog with black patches.” Query 2: “A white dog with gray patches.”
Query 3: “A woman in a yellow jacket.”

Query 1: “A largest orange goldfish.” Query 2: “An orange goldfish in the center next to the largest fish.”
Query 3: “A smallest goldfish.” Query 4: “A goldfish at the end.” Query 5: “A goldfish at the bottom.”

Query 1: “A horse doing high jumps.” Query 2: “A woman riding a horse.”

Query 1: “A woman in a yellow salwar suit.” Query 2: “A woman in a red sari in the middle.”
Query 3: “A lady in a black salwar on the right.”

Query 1: “A man with a blue belt on the right.” Query 2: “A bald man with a black belt in the center.”

Query 1: “A power kite with blue handles.” Query 2: “A surf-board.” Query 3: “A man wearing a black vest.”

Query 1: “A white cell phone in a left hand.” Query 2: “A pink cell phone in a girl’s hand.”
Query 3: “A girl on the right with blonde hair.” Query 4: A girl in the middle wearing a lab-coat and a black shirt.
Query 5: “A girl on the left holding 2 cell phones.”

Figure 6: Segmentation results on the DAVIS-17 validation set, excluding repetitive videos
also contained in the DAVIS-16 validation set.
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Query 1: “A fat man on the right in a black jacket.” Query 2: “A cardboard box held by a man.”

Query 1: “A biker man in a white tshirt.” Query 2: “A black stunt bike.”

Query 3: “A man on the left with a beard wearing jeans.”

Query 1: “A man riding a motorbike.” Query 2: “A green motorbike.”

Query 1: “A black harness with an airbag.” Query 2: “A man launching a paraglider.”Query 3: “Wing risers with cascade.”

Query 1: “A brown and white colored piglet.” Query 2: “A brown piglet in the middle.”
Query 3: “An adult pig on the right.”

Query 1: “A man in a suit riding a scooter.” Query 2: “A black scooter ridden by a man.”

Query 1: “A black shooting gun.” Query 2: “A black man.”

Query 1: “A blue wooden car.” Query 2: “A man in a white helmet driving a wooden car.”
Query 3: “A man wearing a white shirt on a wooden car without a helmet.”

Figure 7: Segmentation results on the DAVIS-17 validation set, excluding repetitive videos
also contained in the DAVIS-16 validation set.
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Query 1: “Cat eating food in the bowl on the ground.”
Query 2: “Small fluffy puppy biting the cat.”

Query 1: “Car jumping into the water.”
Query 2: “A car is parked on the left.”

Query 1: “Woman in green dress is walking on the street.”
Query 2: “Man with a purple backpack walking on the right.”

Query 1: “A baby in white shirt start walking.”
Query 2: “The person on the right is squatting.”

Query 1: “Woman is staple running on the athletic track.” Query 1: “Car jumping from the ramp.”

Query 1: “Black and white dog rolling on the meadow.”
Query 2: “The person is watching a dog.”
Query 3: “Small white dog walking on the right.”

Query 1: “Baby crawling in the corridor.”
Query 2: “The dog on the right is crawling.”
Query 3: “Dog on the left crawling.”

Query 1: “Guy is dribbling a ball around orange cones.”
Query 2: “The basketball is being dribbled.”

Query 1: “Man is dribbling a ball on the basketball court.”
Query 2: “The basketball is being dribbled by the bald man.”

Query 1: “Man in green shirt standing.”
Query 2: “Man in yellow shirt jumping over a man.”

Query 1: “Man throwing a ball.”
Query 2: “A dark ball is flying on the air.”

Query 1: “Small boy trying to walk with the help of his mother.”
Query 2: “Woman is supporting a baby.”

Query 1: “The dog is standing behind a cat.”
Query 2: “Cat rolling on the asphalt near the dog.”

Figure 8: Segmentation results on challenging videos from the A2D test set.
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Query 1: “A girl is rolling on the ground.”

Query 1: “Bird eating on the grass.” Query 1: “Ball is bouncing in the room.”

Query 1: “Man in blue shirt and dark blue short pants standing.”
Query 2: “Man in white top standing in the center.”
Query 3: “A woman is jumping.”
Query 4: “Woman in pink top and black shorts sitting on the left.”

Query 1: “Man in red shirt standing in the middle.”
Query 2: “Man in black jumping up and down.”
Query 3: “Dark colored car on the left.”
Query 4: “Silver car parking on the far right.”

Query 1: “The yellow car is flipping over onto its roof.”

Figure 9: Segmentation results on challenging videos from the A2D test set.
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Query 1: “Man clapping hands.” Query 1: “Man in black pants pulling up.”

Query 1: “Man throwing something into the river.” Query 1: “A top naked man is shooting a pistol.”

Query 1: “Man shooting his bow.” Query 1: “Woman in black clapping her hands.”

Query 1: “A girl is combing her hair.” Query 1: “Man picking up the basketball.”

Query 1: “Woman throwing darts.” Query 1: “Man green shirt playing golf.”

Query 1: “Man in black shirt shooting guns.” Query 1: “Woman in red top and black shorts pulling up.”

Query 1: “Man shooting guns.” Query 1: “Boy swing the baseball.”

Query 1: “A man is throwing a ball toward the basket.”
Query 1: “A man in red jersey is 
shooting in a football game.”

Figure 10: Segmentation results on challenging videos from the J-HMDB dataset.
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Query 1: “Man throwing darts.” Query 1: “A man is playing archery.”

Query 1: “Woman climbing stairs.” Query 1: “A man tried to hit a ball using a baseball bat.”

Query 1: “Man in suit walking in the room.” Query 1: “A man in suit is running.”

Figure 11: Segmentation results on challenging videos from the J-HMDB dataset.
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