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A Adaptive Attack Experimental Setup & Visualization

A.1 Experimental Setup

Since DUP-Net [22] is open-sourced, we target the publicly released PointNet and PU-Net
models. For the L2 norm-based C&W attack [3], we set the loss function as:

L= (‘&a,,X(Z(X’),J —Z(XN) A |IX =X o)
where X € R™3 is the matrix version of point cloud X, X’ is the optimized adversarial
example, Z(X); is the i-th element of the output logits, and #’ is the target class. We leverage
10-step binary search to find the appropriate hyper-parameter A from [10,80]. As suggested
by [20], we choose 10 distinct classes and pick 25 objects in each class from the ModelNet40
validation set for evaluation. The step size of the adversarial optimization is 0.01 and we
allow at most 500 iterations of optimization in each binary search to find the adversarial

examples.
For the L norm-based PGD attack, we adopt the formulation in [9]:

X1 =Ty s(X; +o-sign(Vx, £(X:,6.y))) @)

where X is the adversarial example in the 7-th attack iteration, IT is the projection function to
project the adversarial example to the pre-defined perturbation space S, which is the L™ norm
ball in our setup, and « is the step size. The sign() function also normalizes the perturbation
into the L™ norm ball for each iteration. We select the boundary of allowed perturbations
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€ ={0.01,0.025,0.05,0.075} out of the point cloud data range [—1,1]. Since point cloud
data is continuous, we set the step size ot = %

For GvG-PointNet++ [4], we train it based on the single scale grouping (SSG)-PointNet++
backbone. The backbone network has three PointNet set abstraction module to hierarchically
aggregate local features, and we enable gather vectors in the last module, which contains 128
local features (i.e., n’ = 128 in Section 3.2) with 256 dimensions. To learn the gather vectors,
we apply three fully connected layers with 640, 640, and 3 hidden neurons respectively, as
suggested by Dong et al. [4]. Since the data from ModelNet40 is normalized to [-1,1], the
global object center is ¢, = [0,0,0].

For the L™ norm-based PGD attack, we leverage the same setup as the attack on DUP-
Net. For the L? norm-based PGD attack, we follow the settings in [4] to set the L? norm
threshold € = 8+/n X d;,, where 8 is selected in {0.08,0.16,0.32}, n is the number of points,
and d;, is the dimension of input point cloud (i.e., 3). The attack iteration is set to 50, and
the step size & = &5.

A.2 Visualization

We visualize some adversarial examples generated by adaptive attacks on PU-Net and DUP-
Net in Figure 1 and Figure 2. It is expected that adversarial examples targeting DUP-Net are
noisier than the ones targeting PU-Net as the former needs to break the denoiser layer. How-
ever, as mentioned in Section 3.1, they are barely distinguishable from human perception.
We also visualize some adversarial examples generated by untargeted adaptive PGD attacks
on GvG-PointNet++ in Figure 3 with different perturbation budgets €.

B Adversarial Training Setup
B.1 PGD Attack in Adversarial Training

We also follow the formulation in Equation 8 to find the worst adversarial examples in adver-
sarial training. Specifically, we empirically select € = 0.05 into the training recipe as there is
no quantitative study on how much humans can bear the point cloud perturbations. Figure 3
shows that adversarial examples with € = 0.05 are still recognizable by human perception.
Moreover, because point cloud data is continuous, we set the step size of PGD attacks as:

i, step < 10
o= step 3)
€
0 step > 10
in both training and evaluation phases to make sure PGD attacks reach the allowed maximum
perturbations.

B.2 Point Cloud Classification Model Architecture Detail

PointNet [11], DeepSets [21], and DSS [10] are the fundamental architectures in point cloud
classification. Other models, such as PointNet++ [12] and DGCNN [18], are built upon
PointNet and DeepSets. Moreover, complex models oftentimes apply non-differentiable lay-
ers like knn(-) into end-to-end learning, which will make the adversarial training ineffective.
In this work, we aim at exploring how the symmetric (permutation-invariant) function can
benefit adversarial training. To this end, we choose PointNet, DeepSets, and DSS as the
backbone networks. For the ModelNet40 dataset, we follow the default setting to split into
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Figure 1: Visualizations of adversarial examples (2048 points) generated by L? norm-based
C&W adaptive attacks on PU-Net.

vase

9,843 objects for training and 2,468 objects for validation [19]. We randomly sample 1024
points from each object to form its point cloud, if not otherwise stated.

PointNet. We leverage the default architecture in PointNet codebase' and exclude the trans-
formation nets (i.e., T-Net) and dropout layers for simplicity and reproducibility. Point-
Net leverages shared fully connected (FC) layers as the permutation-equivariant layer ¢; :
FC,(F.;) — F11.; and MAX pooling as the symmetric function p(-).

DeepSets. We leverage the default architecture in DeepSets codebase”. Different from Point-
Net, DeepSets first applies a symmetric function to each feature map and aggregate it with
the original feature map. Afterwards, DeepSets also leverages FC layers to further process
the features: ¢ : FC,(F.; — §(F)) — Fiy1.;, where {(+) is column-wise MAX pooling in
the original implementation. Similarly, MAX pooling is still used as p(-) in DeepSets.

DSS. DSS generalizes DeepSets architecture and applies another FC layer to  (F;) in DeepSets

"https://github.com/charlesq34/pointnet
2https://github.com/manzilzaheer/DeepSets
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Figure 2: Visualizations of adversarial examples (2048 points) generated by L> norm-based
C&W adaptive attacks on DUP-Net.

so that ¢ : FC; (F . ;) +FC3(§(F1)) — Fi11.;. Different from other two achitectures, DSS
utilizes SUM pooling as p(-). Since there is no available codebase at the time of writing, we
implement DSS by ourselves.

We visualize the ¢ (-) of different backbones in Figure 4 and summarize the layer infor-
mation in Table 1.

B.3 Parametric Pooling Design & Implementation

We have introduced ATT in Section 4.3.1. In our implementation, we choose L = 512 so that
V € R312x1024 4 (rain the backbone models.
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Figure 3: Visualizations of adversarial examples (1024 points) generated by L™ norm-based
PGD adaptive attacks on GvG-PointNet++.
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Table 1: Layer information of PointNet, DeepSets, and DSS. BN represents a batch normal-
ization layer.

[ PointNet DeepSets DSS
Pr:nx3—=nx64 @1 :nx3—nx256 ¢r:nx3—=nx64
BN + ReLU BN + ELU BN + ReLU
¢ :nx 64— nx64 @ :nx256 - nx256 | ¢ :nx64—nx256
BN + ReLU BN + ELU BN + ReLU
9 :nx64—nx128 p :nx256 — 256 ¢3:nx 256 — n x 256
BN + ReLLU o1 : 256 — 256 BN + ReLLU
04 :nx 128 — n x 1024 BN + Tanh p :nx256 — 256

BN + ReLU 0y 1256 — 40 o] 1256 — 256
p:nx1024 — 1024 BN + ReLU
o) : 1024 — 512 0y 1256 — 40
BN + ReLU
0y :512 — 256
BN + ReLU
03 :256 — 40

(¢) ¢(-) in DSS.
Figure 4: Different architectures of ¢ (-) in PointNet, DeepSets, and DSS.

(d) The aggregated feature in (b) and (c).

ATT-GATE is a variant of ATT with more learnable parameters:

n
8= Zai’fi
i=1

_exp(w’ - (tanh(V- f") Osigm(U - £)))
Y exp(wT - (tanh(V ~f}r) O sigm(U 'f;'r)))

“

i

where U,V € RE*M | sigm(-) is the sigmoid activation function, and ® is an element-wise
multiplication. We also choose L = 512 in ATT-GATE to train the backbones.

PMA [8] adopts multi-head attention into pooling on a learnable set of k seed vectors
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S € R¥*dm et F € R™¥9m be the matrix version of the set of features.

PMA(F) = MAB(S,FC(F))
MAB(X,Y) = H+FC(H) ©)
where H = X +Multihead(X,Y,Y;w)

where FC(+) is the fully connected layer and Multihead(-) is the multi-head attention mod-
ule [16]. We follow the implementation in the released codebase® to choose k = 1, the
number of head = 4, and the hidden neurons in FC(+) = 128 to train the backbone models.
SoftPool [17] re-organizes F so thatits j-th dimension is sorted in a descending order,
and picks the top k point-level embeddings F'; € R¥*%n to further form F = [F',F),...,F); ].

Then, SoftPool applies CNN to each F j — 8; so that the pooled representation is g =
(81.82,---,84,]. Since SoftPool [17] sorts the feature set in each dimension, it requires
the number of dimensions d,, to be relatively small. We follow the description in their paper
to choose d,, = 8 and k = 32 so that each F’ € R32%8_ We apply one convolutional layer to
aggregate each F'; into g; € R1*32 50 that the final g € R'*236, Therefore, for all backbone
networks with SoftPool, we apply the last equivariant layer as ¢ : n X d,,—1 — n x 8 and
p:nx8—256.

C DeepSym Ablation

It is worth noting that DeepSym does not require the final layer to have only one neuron.
However, to have a fair comparison with other pooling operations that aggregate into one
feature from each dimension, our implementation of DeepSym also aggregates into one
feature from each dimension.

C.1 Evaluation Detail

We also perform extensive evaluations using different PGD attack steps and budgets € on
PGD-20 trained PointNet. Figure 5 shows that PointNet with DeepSym consistently achieves
the best adversarial accuracy. We also validate MEDIAN pooling indeed hinders the gradient
backward propagation. The adversarial accuracy of PointNet with MEDIAN pooling consis-
tently drops even after PGD-1000. However, the adversarial accuracy of PointNet with other
pooling operations usually converges after PGD-200. Figure 6 shows that DeepSym also
outperforms other pooling operations under different adversarial budgets €.

We leverage the default setup in FGSM, BIM, and MIM in our evaluation. FGSM is a
single-step attack method, which can be represented as:

Xaay =X +€-sign(VxL(X,0.y)) (6)

The BIM attack is similar to PGD attacks described in Appendix A.1. The differences are 1)
the attack starts from the original point cloud X and 2) the step size @ = €/T, where T is the
number of attack steps. The MIM attack introduces momentum terms into the adversarial
optimization:

VX £(Xt107y)
= . - 7
Bt = M8 g, X, 0.9 "
X1 =X, +o-sign(g,. ) ®

3https://github.com/juho-lee/set_transformer
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Figure 5: Adversarial accuracy of PGD-20 trained PointNet with different pooling opera-
tions. We leverage the PGD attack with different steps to evaluate the model’s robustness.
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Figure 6: Adversarial accuracy of PGD-20 trained PointNet with different pooling opera-
tions. We leverage the PGD attack with different budgets to evaluate the model’s robustness.

Similar to BIM, the attack starts from the original point cloud X and the step size o = €/T.
We set 1 = 1 following the original setup [5].

Due to the computational resource constraints, we set the sample size = 32 and allow
2000 quires to find each adversarial example in the score-based black-box attack [7, 14]. For
the evolution attack, we use the default loss £ as the fitness score, and initialize 32 sets of
perturbations from a Gaussian distribution N'(0,1). 4 sets of perturbations with top fitness
scores will remain for the next iteration, while others will be discarded. We also allow 2000
generations of evolution to find the adversarial example.

We also find the PointNet implementation* default leverages random rotation for data
augmentation to improve its isometric stability. As we do not take isometric robustness into
consideration, we further remove such augmentation to simplify the learning task. We then
leverage the default setting (PGD-7) to adversarially train the model and test its robustness.
Figure 7 shows that the baseline AT results improve due to the simplicity without rotation, as
expected. Nevertheless, DeepSym still outperforms other pooling operations by a significant
margin (13.6%).

Since DeepSym brings deep trainable layers into the original backbones, it is necessary
to report its overhead. We leverage TensorFlow [2] and NVIDIA profiler [1] to measure
the inference time, the number of trainable parameters, and GPU memory usage on Point-
Net. Specifically, the inference time is averaged from 2468 objects in the validation set, and
the GPU memory is measured on an RTX 2080 with batch size = 8. As shown in Table 2,

4https://github.com/charlesq34/pointnet
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Figure 7: Robustness of PointNet on ModelNet40 without rotation augmentation under
PGD-200 at € = 0.05.

Table 2: Overhead measurement of PointNet with different pooling operations.

Pooling Inference Time | # Trainable | GPU Memory
Operation (ms) Parameters (MB)
MAX 2.21 815,336 989
MEDIAN 2.44 815,336 989
SUM 2.23 815,336 989
ATT 2.71 1,340,649 1980
ATT-GATE 3.07 1,865,962 2013
PMA 2.10 652,136 981
FSPool 2.89 1,863,912 1005
SoftPool 2.85 355,328 725
DeepSym (ours) 3.10 1,411,563 2013

DeepSym indeed introduces more computation overhead by leveraging the shared MLP.
However, we believe the overhead is relatively small and acceptable, compared to its mas-
sive improvements on the adversarial robustness. To further have a lateral comparison, point
cloud classification backbones are much more light-weight than image classification models.
For example, ResNet-50 [6] and VGG-16 [13] have 23 and 138 million trainable parame-
ters, respectively, and take much longer time to do the inference. The reason that models
with SoftPool and PMA have fewer trainable parameters is that they limit the number of
dimensions in the global feature by design.

C.2 Evaluation on ScanObjectNN

We also evaluate the adversarial robustness of different pooling operations on a new point
cloud dataset, ScanObjectNN [15], which contains 2902 objects belonging to 15 categories.
We leverage the same adversarial training setup as ModelNet10 (i.e., PGD-1). Table 3 shows
the results. We find that PointNet with DeepSym still achieves the best adversarial ro-
bustness. Since the point clouds from ScanObjectNN are collected from real-world scenes,
which suffers from occlusion and imperfection, both nominal and adversarial accuracy drops
compared to the results ModelNet40. We find that even some clean point clouds cannot be
correctly recognized by human perception. Therefore, the performance degradation is also
expected and we believe the results are not as representative as ones on ModelNet40.
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Table 3: Adversarial robustness of PointNet with different pooling operations under PGD-
200 at € = 0.05.

Pooling Operation | Nominal Accuracy | Adversarial Accuracy

MAX 75.2% 16.8%
MEDIAN 68.4% 8.2%
SUM 63.5% 18.3%

ATT 62.7% 17.9%
ATT-GATE 59.8% 17.1%
PMA 61.2% 16.2%
FSPool 76.8 % 20.1%
SoftPool 73.2% 17.2%
DeepSym (ours) 76.7% 22.8%

C.3 T-SNE Visualization

We visualize the global feature embeddings of adversarially trained PointNet under PGD-20
with different pooling operations in Figure 8 and their logits in Figure 9. Since it is hard to
pick 40 distinct colors, though we put all data from 40 classes into the T-SNE process, we
only choose 10 categories from ModelNet40 to realize the visualizations.
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Figure 8: T-SNE visualizations of PointNet feature embeddings with MAX,
FSPool, SoftPool, and DeepSym pooling operations. Three columns cor-
respond to training data, validation data, and PGD-200 adversarial validation
data, from left to right.
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Figure 9: T-SNE visualizations of PointNet logits with MAX, FSPool,
SoftPool, and DeepSym pooling operations. Three columns correspond to

training data, validation data, and PGD-200 adversarial validation data, from
left to right.
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