
SUN ET AL.: ROBUSTNESS OF 3D POINT CLOUD CLASSIFICATION 1

On Adversarial Robustness of 3D Point
Cloud Classification under Adaptive Attacks
– Appendix

Jiachen Sun1

jiachens@umich.edu

Karl Koenig1

kamako@umich.edu

Yulong Cao1

yulongc@umich.edu

Qi Alfred Chen2

alfchen@uci.edu

Z. Morley Mao1

zmao@umich.edu

1 Computer Science & Engineering
University of Michigan
Ann Arbor, MI, USA

2 Department of Computer Science
UC Irvine
Irvine, CA, USA

A Adaptive Attack Experimental Setup & Visualization

A.1 Experimental Setup
Since DUP-Net [22] is open-sourced, we target the publicly released PointNet and PU-Net
models. For the L2 norm-based C&W attack [3], we set the loss function as:

L= (max
i 6=t ′

(Z(XXX ′)i)−Z(XXX ′)t ′)
++λ · ||XXX−XXX ′||2 (1)

where XXX ∈ Rn×3 is the matrix version of point cloud X, XXX ′ is the optimized adversarial
example, Z(XXX)i is the i-th element of the output logits, and t ′ is the target class. We leverage
10-step binary search to find the appropriate hyper-parameter λ from [10,80]. As suggested
by [20], we choose 10 distinct classes and pick 25 objects in each class from the ModelNet40
validation set for evaluation. The step size of the adversarial optimization is 0.01 and we
allow at most 500 iterations of optimization in each binary search to find the adversarial
examples.

For the L∞ norm-based PGD attack, we adopt the formulation in [9]:

XXX t+1 = ΠXXX+S(XXX t +α · sign(∇XXX tL(XXX t ,θθθ ,yyy))) (2)

where XXX t is the adversarial example in the t-th attack iteration, Π is the projection function to
project the adversarial example to the pre-defined perturbation space S, which is the L∞ norm
ball in our setup, and α is the step size. The sign() function also normalizes the perturbation
into the L∞ norm ball for each iteration. We select the boundary of allowed perturbations

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Zhou, Chen, Zhang, Fang, Zhou, and Yu} 2019

Citation
Citation
{Carlini and Wagner} 2017

Citation
Citation
{Xiang, Qi, and Li} 2019

Citation
Citation
{Madry, Makelov, Schmidt, Tsipras, and Vladu} 2018

2 SUN ET AL.: ROBUSTNESS OF 3D POINT CLOUD CLASSIFICATION

ε = {0.01,0.025,0.05,0.075} out of the point cloud data range [−1,1]. Since point cloud
data is continuous, we set the step size α = ε

10 .
For GvG-PointNet++ [4], we train it based on the single scale grouping (SSG)-PointNet++

backbone. The backbone network has three PointNet set abstraction module to hierarchically
aggregate local features, and we enable gather vectors in the last module, which contains 128
local features (i.e., n′ = 128 in Section 3.2) with 256 dimensions. To learn the gather vectors,
we apply three fully connected layers with 640, 640, and 3 hidden neurons respectively, as
suggested by Dong et al. [4]. Since the data from ModelNet40 is normalized to [-1,1], the
global object center is cccg = [0,0,0].

For the L∞ norm-based PGD attack, we leverage the same setup as the attack on DUP-
Net. For the L2 norm-based PGD attack, we follow the settings in [4] to set the L2 norm
threshold ε = δ

√
n×din, where δ is selected in {0.08,0.16,0.32}, n is the number of points,

and din is the dimension of input point cloud (i.e., 3). The attack iteration is set to 50, and
the step size α = ε

50 .

A.2 Visualization
We visualize some adversarial examples generated by adaptive attacks on PU-Net and DUP-
Net in Figure 1 and Figure 2. It is expected that adversarial examples targeting DUP-Net are
noisier than the ones targeting PU-Net as the former needs to break the denoiser layer. How-
ever, as mentioned in Section 3.1, they are barely distinguishable from human perception.
We also visualize some adversarial examples generated by untargeted adaptive PGD attacks
on GvG-PointNet++ in Figure 3 with different perturbation budgets ε .

B Adversarial Training Setup
B.1 PGD Attack in Adversarial Training
We also follow the formulation in Equation 8 to find the worst adversarial examples in adver-
sarial training. Specifically, we empirically select ε = 0.05 into the training recipe as there is
no quantitative study on how much humans can bear the point cloud perturbations. Figure 3
shows that adversarial examples with ε = 0.05 are still recognizable by human perception.
Moreover, because point cloud data is continuous, we set the step size of PGD attacks as:

α =

ε

step
, step < 10

ε

10
, step≥ 10

(3)

in both training and evaluation phases to make sure PGD attacks reach the allowed maximum
perturbations.

B.2 Point Cloud Classification Model Architecture Detail
PointNet [11], DeepSets [21], and DSS [10] are the fundamental architectures in point cloud
classification. Other models, such as PointNet++ [12] and DGCNN [18], are built upon
PointNet and DeepSets. Moreover, complex models oftentimes apply non-differentiable lay-
ers like knn(·) into end-to-end learning, which will make the adversarial training ineffective.
In this work, we aim at exploring how the symmetric (permutation-invariant) function can
benefit adversarial training. To this end, we choose PointNet, DeepSets, and DSS as the
backbone networks. For the ModelNet40 dataset, we follow the default setting to split into

Citation
Citation
{Dong, Chen, Zhou, Hua, Zhang, and Yu} 2020

Citation
Citation
{Dong, Chen, Zhou, Hua, Zhang, and Yu} 2020

Citation
Citation
{Dong, Chen, Zhou, Hua, Zhang, and Yu} 2020

Citation
Citation
{Qi, Su, Mo, and Guibas} 2017{}

Citation
Citation
{Zaheer, Kottur, Ravanbakhsh, Poczos, Salakhutdinov, and Smola} 2017

Citation
Citation
{Maron, Litany, Chechik, and Fetaya} 2020

Citation
Citation
{Qi, Yi, Su, and Guibas} 2017{}

Citation
Citation
{Wang, Sun, Liu, Sarma, Bronstein, and Solomon} 2019

SUN ET AL.: ROBUSTNESS OF 3D POINT CLOUD CLASSIFICATION 3

airplane bed bookshelf bottle chair monitor sofa table toilet vase
 v

as
e

to

ile
t

ta
bl

e

so
fa

 m
on

ito
r

 c

ha
ir

 b
ot

tle

 b
oo

ks
he

lf

 b
ed

 a
irp

la
ne

Figure 1: Visualizations of adversarial examples (2048 points) generated by L2 norm-based
C&W adaptive attacks on PU-Net.

9,843 objects for training and 2,468 objects for validation [19]. We randomly sample 1024
points from each object to form its point cloud, if not otherwise stated.
PointNet. We leverage the default architecture in PointNet codebase1 and exclude the trans-
formation nets (i.e., T-Net) and dropout layers for simplicity and reproducibility. Point-
Net leverages shared fully connected (FC) layers as the permutation-equivariant layer φl :
FCl(FFF l :,i)→ FFF l+1:,i and MAX pooling as the symmetric function ρ(·).
DeepSets. We leverage the default architecture in DeepSets codebase2. Different from Point-
Net, DeepSets first applies a symmetric function to each feature map and aggregate it with
the original feature map. Afterwards, DeepSets also leverages FC layers to further process
the features: φl : FCl(FFF l :,i− ζ (FFF l))→ FFF l+1:,i, where ζ (·) is column-wise MAX pooling in
the original implementation. Similarly, MAX pooling is still used as ρ(·) in DeepSets.
DSS. DSS generalizes DeepSets architecture and applies another FC layer to ζ (FFF l) in DeepSets

1https://github.com/charlesq34/pointnet
2https://github.com/manzilzaheer/DeepSets

Citation
Citation
{Wu, Song, Khosla, Yu, Zhang, Tang, and Xiao} 2015

https://github.com/charlesq34/pointnet
https://github.com/manzilzaheer/DeepSets

4 SUN ET AL.: ROBUSTNESS OF 3D POINT CLOUD CLASSIFICATION

airplane bed bookshelf bottle chair monitor sofa table toilet vase

 v
as

e

to
ile

t

ta

bl
e

so

fa

 m

on
ito

r

 c
ha

ir

 b

ot
tle

 b

oo
ks

he
lf

 b

ed

 a

irp
la

ne

Figure 2: Visualizations of adversarial examples (2048 points) generated by L2 norm-based
C&W adaptive attacks on DUP-Net.

so that φl : FCl1(FFF l :,i)+FCl2(ζ (FFF l))→ FFF l+1:,i. Different from other two achitectures, DSS
utilizes SUM pooling as ρ(·). Since there is no available codebase at the time of writing, we
implement DSS by ourselves.

We visualize the φ(·) of different backbones in Figure 4 and summarize the layer infor-
mation in Table 1.

B.3 Parametric Pooling Design & Implementation

We have introduced ATT in Section 4.3.1. In our implementation, we choose L = 512 so that
VVV ∈ R512×1024 to train the backbone models.

SUN ET AL.: ROBUSTNESS OF 3D POINT CLOUD CLASSIFICATION 5

 ε=0.0 ε=0.01 ε=0.025 ε=0.05 ε=0.075

 v
as

e

to
ile

t

ta

bl
e

so

fa

 m

on
ito

r

 c
ha

ir

 b

ot
tle

 b

oo
ks

he
lf

 b

ed

 a

irp
la

ne

Figure 3: Visualizations of adversarial examples (1024 points) generated by L∞ norm-based
PGD adaptive attacks on GvG-PointNet++.

6 SUN ET AL.: ROBUSTNESS OF 3D POINT CLOUD CLASSIFICATION

Table 1: Layer information of PointNet, DeepSets, and DSS. BN represents a batch normal-
ization layer.

PointNet DeepSets DSS
φ1 : n×3→ n×64 φ1 : n×3→ n×256 φ1 : n×3→ n×64

BN + ReLU BN + ELU BN + ReLU
φ2 : n×64→ n×64 φ2 : n×256→ n×256 φ2 : n×64→ n×256

BN + ReLU BN + ELU BN + ReLU
φ3 : n×64→ n×128 ρ : n×256→ 256 φ3 : n×256→ n×256

BN + ReLU σ1 : 256→ 256 BN + ReLU
φ4 : n×128→ n×1024 BN + Tanh ρ : n×256→ 256

BN + ReLU σ2 : 256→ 40 σ1 : 256→ 256
ρ : n×1024→ 1024 BN + ReLU

σ1 : 1024→ 512 σ2 : 256→ 40
BN + ReLU

σ2 : 512→ 256
BN + ReLU

σ3 : 256→ 40

……

……
……
……

……

……
……

……

……

……

……
……
……

……

……
……

……

……

…

…

…

…

…

…

…

…

…

…

()
()
()

()

FC
FC
FC

FC

dl dl+1

 …
 …

 …
 …

(a) φ(·) in PointNet.

……

……
……
……

……

……
……

……

……

……

……
……
……

……

……
……

……

……

…

…

…

…

…

…

…

…

…

…

()
()
()

()

 FC
dl dl+1

 …
 …

 …
 …

 …
 …

 …
 …

-
-
-

- ……

……

……

……

 FC
 FC

 FC

(b) φ(·) in DeepSets.

……

……
……
……

……

……
……

……

……

……

……
……
……

……

……
……

……

……

…

…

…

…

…

…

…

…

…

…

 () FC2()FC1

dl dl+1

 …
 …

 …
 …

 …
 …

……

……

……

……

 () FC2()
 () FC2()

 () FC2()

+
+
+

+

 …
 …

FC1

FC1

FC1

(c) φ(·) in DSS.

……

……
……
……

……

……
……

……

……

…

…

…

…

…

dl

𝛇 …
 …

……

(d) The aggregated feature in (b) and (c).
Figure 4: Different architectures of φ(·) in PointNet, DeepSets, and DSS.

ATT-GATE is a variant of ATT with more learnable parameters:

ggg =
n

∑
i=1

ai · fff i

ai =
exp(www> · (tanh(VVV · fff>i)� sigm(UUU · fff>i)))

∑
n
j=1 exp(www> · (tanh(VVV · fff>j)� sigm(UUU · fff>j)))

(4)

where UUU ,VVV ∈ RL×M , sigm(·) is the sigmoid activation function, and � is an element-wise
multiplication. We also choose L = 512 in ATT-GATE to train the backbones.

PMA [8] adopts multi-head attention into pooling on a learnable set of k seed vectors

Citation
Citation
{Lee, Lee, Kim, Kosiorek, Choi, and Teh} 2019

SUN ET AL.: ROBUSTNESS OF 3D POINT CLOUD CLASSIFICATION 7

SSS ∈ Rk×dm Let FFF ∈ Rn×dm be the matrix version of the set of features.

PMAk(FFF) = MAB(SSS,FC(FFF))

MAB(XXX ,YYY) = HHH +FC(HHH)

where HHH = XXX +Multihead(XXX ,YYY ,YYY ;www)

(5)

where FC(·) is the fully connected layer and Multihead(·) is the multi-head attention mod-
ule [16]. We follow the implementation in the released codebase3 to choose k = 1, the
number of head = 4, and the hidden neurons in FC(·) = 128 to train the backbone models.

SoftPool [17] re-organizes FFF so that its j-th dimension is sorted in a descending order,
and picks the top k point-level embeddings FFF ′j ∈Rk×dm to further form F̃FF = [FFF ′1,FFF

′
2, . . . ,FFF

′
dm
].

Then, SoftPool applies CNN to each F̃FF j → ggg j so that the pooled representation is ggg =
[ggg1,ggg2, . . . ,gggdm]. Since SoftPool [17] sorts the feature set in each dimension, it requires
the number of dimensions dm to be relatively small. We follow the description in their paper
to choose dm = 8 and k = 32 so that each FFF j

′ ∈ R32×8. We apply one convolutional layer to
aggregate each FFF ′ j into g j ∈ R1×32 so that the final ggg ∈ R1×256. Therefore, for all backbone
networks with SoftPool, we apply the last equivariant layer as φ : n×dm−1→ n×8 and
ρ : n×8→ 256.

C DeepSym Ablation
It is worth noting that DeepSym does not require the final layer to have only one neuron.
However, to have a fair comparison with other pooling operations that aggregate into one
feature from each dimension, our implementation of DeepSym also aggregates into one
feature from each dimension.

C.1 Evaluation Detail
We also perform extensive evaluations using different PGD attack steps and budgets ε on
PGD-20 trained PointNet. Figure 5 shows that PointNet with DeepSym consistently achieves
the best adversarial accuracy. We also validate MEDIAN pooling indeed hinders the gradient
backward propagation. The adversarial accuracy of PointNet with MEDIAN pooling consis-
tently drops even after PGD-1000. However, the adversarial accuracy of PointNet with other
pooling operations usually converges after PGD-200. Figure 6 shows that DeepSym also
outperforms other pooling operations under different adversarial budgets ε .

We leverage the default setup in FGSM, BIM, and MIM in our evaluation. FGSM is a
single-step attack method, which can be represented as:

XXXadv = XXX + ε · sign(∇XXXL(XXX ,θθθ ,yyy)) (6)

The BIM attack is similar to PGD attacks described in Appendix A.1. The differences are 1)
the attack starts from the original point cloud XXX and 2) the step size α = ε/T , where T is the
number of attack steps. The MIM attack introduces momentum terms into the adversarial
optimization:

gggt+1 = µ ·gggt +
∇XXX tL(XXX t ,θθθ ,yyy)
||∇XXX tL(XXX t ,θθθ ,yyy))||1

(7)

XXX t+1 = XXX t +α · sign(gggt+1) (8)

3https://github.com/juho-lee/set_transformer

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Wang, Tan, Navab, and Tombari} 2020

Citation
Citation
{Wang, Tan, Navab, and Tombari} 2020

https://github.com/juho-lee/set_transformer

8 SUN ET AL.: ROBUSTNESS OF 3D POINT CLOUD CLASSIFICATION

Figure 5: Adversarial accuracy of PGD-20 trained PointNet with different pooling opera-
tions. We leverage the PGD attack with different steps to evaluate the model’s robustness.

Figure 6: Adversarial accuracy of PGD-20 trained PointNet with different pooling opera-
tions. We leverage the PGD attack with different budgets to evaluate the model’s robustness.

Similar to BIM, the attack starts from the original point cloud XXX and the step size α = ε/T .
We set µ = 1 following the original setup [5].

Due to the computational resource constraints, we set the sample size = 32 and allow
2000 quires to find each adversarial example in the score-based black-box attack [7, 14]. For
the evolution attack, we use the default loss L as the fitness score, and initialize 32 sets of
perturbations from a Gaussian distribution N (0,1). 4 sets of perturbations with top fitness
scores will remain for the next iteration, while others will be discarded. We also allow 2000
generations of evolution to find the adversarial example.

We also find the PointNet implementation4 default leverages random rotation for data
augmentation to improve its isometric stability. As we do not take isometric robustness into
consideration, we further remove such augmentation to simplify the learning task. We then
leverage the default setting (PGD-7) to adversarially train the model and test its robustness.
Figure 7 shows that the baseline AT results improve due to the simplicity without rotation, as
expected. Nevertheless, DeepSym still outperforms other pooling operations by a significant
margin (13.6%).

Since DeepSym brings deep trainable layers into the original backbones, it is necessary
to report its overhead. We leverage TensorFlow [2] and NVIDIA profiler [1] to measure
the inference time, the number of trainable parameters, and GPU memory usage on Point-
Net. Specifically, the inference time is averaged from 2468 objects in the validation set, and
the GPU memory is measured on an RTX 2080 with batch size = 8. As shown in Table 2,

4https://github.com/charlesq34/pointnet

Citation
Citation
{Dong, Liao, Pang, Su, Zhu, Hu, and Li} 2018

Citation
Citation
{Ilyas, Engstrom, Athalye, and Lin} 2018

Citation
Citation
{Uesato, O'Donoghue, Oord, and Kohli} 2018

Citation
Citation
{Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard, etprotect unhbox voidb@x protect penalty @M {}al.} 2016

Citation
Citation
{nvi} 2021

https://github.com/charlesq34/pointnet

SUN ET AL.: ROBUSTNESS OF 3D POINT CLOUD CLASSIFICATION 9

Figure 7: Robustness of PointNet on ModelNet40 without rotation augmentation under
PGD-200 at ε = 0.05.

Table 2: Overhead measurement of PointNet with different pooling operations.

Pooling
Operation

Inference Time
(ms)

Trainable
Parameters

GPU Memory
(MB)

MAX 2.21 815,336 989
MEDIAN 2.44 815,336 989
SUM 2.23 815,336 989
ATT 2.71 1,340,649 1980

ATT-GATE 3.07 1,865,962 2013
PMA 2.10 652,136 981

FSPool 2.89 1,863,912 1005
SoftPool 2.85 355,328 725

DeepSym (ours) 3.10 1,411,563 2013

DeepSym indeed introduces more computation overhead by leveraging the shared MLP.
However, we believe the overhead is relatively small and acceptable, compared to its mas-
sive improvements on the adversarial robustness. To further have a lateral comparison, point
cloud classification backbones are much more light-weight than image classification models.
For example, ResNet-50 [6] and VGG-16 [13] have 23 and 138 million trainable parame-
ters, respectively, and take much longer time to do the inference. The reason that models
with SoftPool and PMA have fewer trainable parameters is that they limit the number of
dimensions in the global feature by design.

C.2 Evaluation on ScanObjectNN

We also evaluate the adversarial robustness of different pooling operations on a new point
cloud dataset, ScanObjectNN [15], which contains 2902 objects belonging to 15 categories.
We leverage the same adversarial training setup as ModelNet10 (i.e., PGD-1). Table 3 shows
the results. We find that PointNet with DeepSym still achieves the best adversarial ro-
bustness. Since the point clouds from ScanObjectNN are collected from real-world scenes,
which suffers from occlusion and imperfection, both nominal and adversarial accuracy drops
compared to the results ModelNet40. We find that even some clean point clouds cannot be
correctly recognized by human perception. Therefore, the performance degradation is also
expected and we believe the results are not as representative as ones on ModelNet40.

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Uy, Pham, Hua, Nguyen, and Yeung} 2019

10 SUN ET AL.: ROBUSTNESS OF 3D POINT CLOUD CLASSIFICATION

Table 3: Adversarial robustness of PointNet with different pooling operations under PGD-
200 at ε = 0.05.

Pooling Operation Nominal Accuracy Adversarial Accuracy

MAX 75.2% 16.8%
MEDIAN 68.4% 8.2%
SUM 63.5% 18.3%
ATT 62.7% 17.9%

ATT-GATE 59.8% 17.1%
PMA 61.2% 16.2%

FSPool 76.8% 20.1%
SoftPool 73.2% 17.2%

DeepSym (ours) 76.7% 22.8%

C.3 T-SNE Visualization
We visualize the global feature embeddings of adversarially trained PointNet under PGD-20
with different pooling operations in Figure 8 and their logits in Figure 9. Since it is hard to
pick 40 distinct colors, though we put all data from 40 classes into the T-SNE process, we
only choose 10 categories from ModelNet40 to realize the visualizations.

SUN ET AL.: ROBUSTNESS OF 3D POINT CLOUD CLASSIFICATION 11

(a) MAX pooling on training data, validation data, and PGD-200 adversarial validation data.

(b) FSPool on training data, validation data, and PGD-200 adversarial validation data.

(c) SoftPool on training data, validation data, and PGD-200 adversarial validation data.

(d) DeepSym on training data, validation data, and PGD-200 adversarial validation data.
Figure 8: T-SNE visualizations of PointNet feature embeddings with MAX,
FSPool, SoftPool, and DeepSym pooling operations. Three columns cor-
respond to training data, validation data, and PGD-200 adversarial validation
data, from left to right.

12 SUN ET AL.: ROBUSTNESS OF 3D POINT CLOUD CLASSIFICATION

(a) MAX pooling on training data, validation data, and PGD-200 adversarial validation data.

(b) FSPool on training data, validation data, and PGD-200 adversarial validation data.

(c) SoftPool on training data, validation data, and PGD-200 adversarial validation data.

(d) DeepSym on training data, validation data, and PGD-200 adversarial validation data.
Figure 9: T-SNE visualizations of PointNet logits with MAX, FSPool,
SoftPool, and DeepSym pooling operations. Three columns correspond to
training data, validation data, and PGD-200 adversarial validation data, from
left to right.

SUN ET AL.: ROBUSTNESS OF 3D POINT CLOUD CLASSIFICATION 13

References
[1] NVIDIA System Management Interface. https://developer.nvidia.com/

nvidia-system-management-interface, 2021.

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} symposium on operating systems design and imple-
mentation ({OSDI} 16), pages 265–283, 2016.

[3] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. 2017
IEEE Symposium on Security and Privacy (SP), May 2017. doi: 10.1109/sp.2017.49. URL
http://dx.doi.org/10.1109/SP.2017.49.

[4] Xiaoyi Dong, Dongdong Chen, Hang Zhou, Gang Hua, Weiming Zhang, and Nenghai Yu. Self-
robust 3d point recognition via gather-vector guidance. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), June 2020.

[5] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li.
Boosting adversarial attacks with momentum. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 9185–9193, 2018.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[7] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box adversarial attacks
with limited queries and information. arXiv preprint arXiv:1804.08598, 2018.

[8] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh.
Set transformer: A framework for attention-based permutation-invariant neural networks. In
International Conference on Machine Learning, pages 3744–3753, 2019.

[9] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Confer-
ence on Learning Representations, 2018. URL https://openreview.net/forum?id=
rJzIBfZAb.

[10] Haggai Maron, Or Litany, Gal Chechik, and Ethan Fetaya. On learning sets of symmetric ele-
ments. arXiv preprint arXiv:2002.08599, 2020.

[11] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 652–660, 2017.

[12] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In Advances in neural information processing
systems, pages 5099–5108, 2017.

[13] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[14] Jonathan Uesato, Brendan O’Donoghue, Aaron van den Oord, and Pushmeet Kohli. Adversarial
risk and the dangers of evaluating against weak attacks. arXiv preprint arXiv:1802.05666, 2018.

https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
http://dx.doi.org/10.1109/SP.2017.49
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb

14 SUN ET AL.: ROBUSTNESS OF 3D POINT CLOUD CLASSIFICATION

[15] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Duc Thanh Nguyen, and Sai-Kit Ye-
ung. Revisiting point cloud classification: A new benchmark dataset and classification model on
real-world data. In International Conference on Computer Vision (ICCV), 2019.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[17] Yida Wang, David Joseph Tan, Nassir Navab, and Federico Tombari. Softpoolnet: Shape descrip-
tor for point cloud completion and classification. arXiv preprint arXiv:2008.07358, 2020.

[18] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics
(TOG), 2019.

[19] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianx-
iong Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.

[20] Chong Xiang, Charles R Qi, and Bo Li. Generating 3d adversarial point clouds. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9136–9144, 2019.

[21] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30,
pages 3391–3401. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
6931-deep-sets.pdf.

[22] Hang Zhou, Kejiang Chen, Weiming Zhang, Han Fang, Wenbo Zhou, and Nenghai Yu. Dup-net:
Denoiser and upsampler network for 3d adversarial point clouds defense. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.

http://papers.nips.cc/paper/6931-deep-sets.pdf
http://papers.nips.cc/paper/6931-deep-sets.pdf

