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In this document, we provide additional materials to supplement our main submission.
We first present more details about constructing our Composition Assessment DataBase
(CADB) in Section 1. Then, we describe the detailed consistency analysis of the collected
composition scores in Section 2, which verifies that our composition quality annotations
are reliable for scientific research. Next, we use some examples to illustrate the content
bias in the CADB dataset in Section 3. Meanwhile, in Section 4, we describe the proposed
weighted EMD loss and study the effect of using weighted EMD loss to mitigate the con-
tent bias. Besides, more implementation details of the proposed method are provided in
Section 5. In Section 6, Section 7, Section 8, Section 9, and Section 10, experiments on
the hyper-parameter, training set size, backbone, each composition pattern, and using more
composition patters further prove the effectiveness of our method. The we compare the per-
formance of our method and human raters in Section 11. Finally, in Section 12, we provide
additional visualization results on images inside/outside our CADB dataset.

1 Our CADB Dataset

1.1 Data Collection
Recently, many large-scale aesthetic assessment datasets have been created to facilitate re-
search on image aesthetic evaluation, like Aesthetic Visual Analysis database (AVA) [13],
Aesthetics and Attributes DataBase (AADB) [11], Photo Critique Captioning Dataset (PCCD)
[2], AVA-Comments [22], AVA-Reviewes [21], FLICKER-AES [17], and DPC-Captions [8].
Therefore, we can build the CADB dataset upon those existing datasets. Table 1 provides
a summary comparison of CADB to other related aesthetic datasets. Here we select real
photos to construct our dataset, because we target at the real-world application of compo-
sition assessment. To the best of our knowledge, among them, only the images in AADB
and PCCD datasets are all real photos, while the images in other datasets (e.g., AVA dataset)
may be heavily edited or synthetic. Besides, PCCD dataset contains 4,235 images down-
loaded from a professional photo critique website, most of which are taken by professional
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Dataset Images All Real Photo Composition Score Raters
AVA [13] 255,530 N N -
PCCD [2] 4,235 Y Y 1
AADB [11] 10,000 Y N -
CADB(Ours) 9,497 Y Y 5

Table 1: Comparison with existing aesthetic assessment datasets. Our CADB dataset is built
upon the AADB dataset, taking into account its all real-world images, and more balanced
distribution of professional and amateurish photos [11].

photographers and have relatively high composition quality. Differently, AADB dataset pro-
vides 10,000 images and contains a much more unbiased distribution of professional photos
and amateurish photos. So we choose to construct our CADB dataset based on the AADB
dataset.

1.2 Guidelines for Image Composition Evaluation

In this section, we show the annotation guidelines for evaluating the quality of image compo-
sition, aiming to make the annotation consistent across five individual raters who specialize
in fine art. 1) We provide a composition rating scale from 1 to 5, where a larger score
indicates better composition. 2) To help raters quickly learn the rules of image composi-
tion rating, we provide them with 100 images with high composition quality and 100 images
with low composition quality selected from PCCD dataset [2] to serve as examples. 3) When
assessing image composition quality, the photographic rules that should be considered are
including but not limited to: rule of thirds, centred composition, symmetry, repetition, shal-
low depth of field, diagonals, triangles, golden ratio, frame within the frame, leading lines,
fill the frame, isolate the subject, vanishing point, juxtaposition, balancing elements, and
object emphasis. In addition, we draw a 3×3 dotted grid on each image as auxiliary lines
that divide the image into nine equal rectangles, which is displayed for the raters together
with the original image. 4) The raters are requested to complete the composition rating in-
dependently, and the rating procedure for each single image should not be shorter than 20
seconds.

Besides, the same five raters annotate all images to mitigate the inconsistency across
different raters. Following [11, 13], we average the composition scores of the five raters as
the ground-truth composition mean score for each image.

1.3 Annotation Examples and Statistics

Figure 2: The distribution of composition
mean score in our CADB dataset. The dashed
line indicates the fitted Gaussian distribution.

In Figure 1, we present some examples
in our CADB dataset with five composi-
tion scores and composition mean score
that is obtained by averaging those com-
position scores for each image. For bet-
ter visualization, we divide these examples
into three groups according to the compo-
sition mean score: images with high, low,
medium scores. From Figure 1, we can
roughly verify the validness of the compo-
sition annotations.
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Figure 1: Some example images in our CADB dataset with high/low/medium composition
mean scores. We show five composition scores ranging from 1 to 5 provided by five raters
in blue and the calculated composition mean score in red. We also show the aesthetic scores
annotated by AADB dataset [11] on a scale from 1 to 5 in green.
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Figure 3: Permutation test on Kendall’s W . Left: p(W ) vs. W . Right: p(W < t) vs. t.

In Figure 1, we also present the aesthetic scores annotated by AADB dataset [11] , which
is also rated by multiple individual human raters on a scale from 1 to 5 for the overall aes-
thetic quality, a larger score indicates higher aesthetic quality. We can see that, for some
images, a high (resp., low) composition score does not mean a high (resp., low) aesthetic
score. This is because that the composition assessment focuses on analyzing the placement
of visual elements in the image, while aesthetic evaluation quantifies the aesthetic quality
of the image in a comprehensive manner by taking not only image composition but also
other visual factors (e.g., interesting content, good lighting, color harmony, vivid color, mo-
tion blur, and shallow depth of field) into consideration. The essential difference between
the above tasks further sheds light on the significance of specially developing methods for
evaluating overall composition quality.

Furthermore, we calculate the distribution of composition mean score in Figure 2, where
indicates that the scores are well fit by Gaussian distribution similar to the observation in
AADB dataset [11] and AVA dataset [13]. As shown in Figure 2, the average and variance
of composition mean score is 2.70 and 0.35, respectively.

2 Consistency Analysis of Annotations

Considering the subjective nature of human aesthetic activity [5, 16, 19], we carry out consis-
tency analysis on the composition scores provided by multiple raters to verify that our CADB
dataset is qualified for scientific evaluation. Following [11], we employ both Kendall’s con-
cordance coefficient (also known as Kendall’s W ) and Spearman’s rank correlation coeffi-
cient (also known as Spearman’s ρ) in the experiments. Kendall’s W indicates the agree-
ment among multiple raters and accounts for tied ranks, the value of which varies from 0 (no
agreement) to 1 (complete agreement). Spearman’s ρ is computed between the predicted
and ground-truth composition score distribution to measure their closeness.

Since five raters annotated a collection of 10,200 images (including 240 sanity check im-
ages), we calculate an average Kendall’s W of 0.5734 over all images, which demonstrates
significant consistency among different raters. Then, following [11], we conduct a permuta-
tion test over global Kendall’s W to obtain the distribution of W under the null hypothesis,
the curves of which p(W ) vs. W and p(W < t) vs. t are illustrated in Figure 3. We can ob-
serve that the empirical Kendall’s W on our CADB dataset is statistically significant from
both curves.

Then, similar to [11], we investigate the consistency of composition scores at batch level
and randomly split all annotated samples into multiple batches with each batch containing
100 images. For each batch, we calculate Kendall’s W to evaluate the consistency of annota-
tions provided by different raters and confirm its statistical significance by using Benjamini-
Hochberg procedure [1] controlling the false discovery rate (FDR) for multiple comparisons.
At FDR level Q = 0.05, 100.0% batches have significant agreement, which means that all
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Figure 4: Illustration of biased categories in the CADB dataset. For each category (colored
red), given images containing this object category, we count the occurrence of composition
mean score in four score bins.

batches of our annotations have consistent composition scores, and our dataset is qualified
for scientific evaluation.

Moreover, we also adopt Spearman’s ρ to measure the rank correlation between the
composition scores of pairwise raters and test its statistical significance at batch level via
Benjamini-Hochberg procedure. The p-value for each batch is computed by averaging the
pairwise p-values in the current batch following [11]. At FDR level Q = 0.05, 98.04%
batches have significant agreement, which further confirms the reliability of the composition
quality annotations in our CADB dataset.

3 Content Bias

In Section 3 of the main text, we briefly mention the content bias issue in our CADB dataset.
Here we provide a detailed description of this concept. Intuitively, photos of any object cat-
egory have chances to be of high or low composition quality, which means that composition
mean score ȳ should be approximately evenly distributed within each category. However,
in our CADB dataset, as illustrated in Figure 4, we observe that there are some categories
whose score distributions are concentrated in a very narrow interval, and we refer to these
categories as biased categories. For example, as shown in in Figure 4, most bird photos are
rated with high scores, probably because bird photos are more likely to be taken by profes-
sional photographers rather than amateurs. In this case, the network may find a shortcut to
simply rate images based on their contents, which is dubbed as content bias in this paper.

To identify the biased categories, we first leverage Faster R-CNN [18] trained on Visual
Genome [12] to detect objects for all images. We divide the range of composition mean score
ȳ into M bins (M = 4) with the bin size equal to 1 (e.g., [1,2)). For the images containing each
object category, we count the occurrence of ȳ in each bin and derive the score distribution
over M bins. To measure the degree of bias, we compute the entropy of the score distribution
for all categories. The category with an entropy below 0.1 is treated as a highly biased
category whose associated images will be removed from our dataset. After this step, there are
9,497 images left. Then, we calculate the ratio of the maximum occurrence to the minimum
non-zero occurrence in the M bins as rc for the c-th category. A category is defined as
an unbiased category if rc ≤ 1.5 and otherwise a biased category. Furthermore, an image
is defined as an unbiased image if its involving categories are all unbiased categories and
otherwise a biased image.

For the test images in real-world applications, photos of any object category have chances
to be of high or low composition quality. For better evaluation, we select 950 unbiased
images to form the test set, which is closer to the test set in practice, and use the remaining
8,547 images (including both unbiased and biased ones) for training.
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Figure 5: Illustration of using weighted EMD loss to eliminate content bias. For each cat-
egory (colored red), given images containing this object category, we count three type of
occurrences of composition mean scores in four score bins: ground-truth, predicted by the
model trained with EMD loss, predicted by the model trained with our weighted EMD loss.

4 Weighted EMD Loss
In our CADB dataset, each image is rated by five raters, so both composition mean score
and composition score distribution can be computed. Considering the intrinsic orderliness
of our composition rating scale (see Section 1.2), we train our model to predict composition
score distribution and adopt the normalized EMD loss [7], which has been widely used in
aesthetic assessment [3, 20]. We assume that the ground-truth and predicted composition
score distribution are y and ŷ, respectively. Then, the normalized EMD loss can be calculated
by

LEMD(y, ŷ) =

(
1
S

S

∑
s=1

∣∣CDFy(s)−CDFŷ(s)
∣∣r)1/r

, (1)

where S = 5 is the scale of composition score in our dataset and r is a hyper-parameter.
CDFy(s) = ∑

s
i=1 yi denotes the cumulative distribution function. We set r = 2 following [3,

20]. The predicted composition mean score can be calculated as the expectation of the score
distribution ∑

S
i=1 i · ŷi. As discussed in Section 3, we observe content bias in our dataset, that

is, the images with certain object categories are more likely to have high or low composition
scores. Training on such data, the network may find a shortcut to simply rate images based
on their contents, leading to weak generalization ability to real-world photos. To eliminate
the effect of content bias and prevent the model from learning a shortcut, we propose a
strategy that assigns different weights to different samples when calculating EMD Loss.
Specifically, as mentioned in Section 3, the range of composition mean score ȳ is divided
into M bins. We use Tm,c to present the occurrence that the c-th category appears in m-th bin

and calculate weights for each category via the strategy proposed in [9]: αm,c =
∑

M
m=1 Tm,c
M·Tm,c

,
which is inversely proportional to Tm,c. Given an image that contains C object categories
and has a ȳ falling in the m-th bin, we take the minimum weight across all categories as
its weight β = min{αm,1,αm,2, . . . ,αm,C}. Instead of minimum, we have also tried several
other options (e.g., maximum, median, and mean), but minimum gives the best result. The
weight β is different for different training samples. We precompute β for all training samples
beforehand and assign sample-specific weight β to EMD loss (1) during training.

In the ablation study in Section 5.2 of the main text, we have confirmed that using
weighted EMD loss can benefit model performance by eliminating content bias. To take
a closer look at the advantage of weighted EMD loss in eliminating content bias, for each
category, we analyze the distribution of ground-truth/predicted composition mean scores of
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Figure 6: Analysis of hyper-parameters and training set size on our CADB dataset. (a) Per-
formance variation of our model with different hyper-parameter λ . (b) Performance varia-
tion of our model with different training set size. The dashed vertical line denotes the default
value used in our paper.

Backbone MSE↓ EMD↓ SRCC↑ LCC↑
ResNet-18 0.3867 0.1798 0.6564 0.6709
ResNet-34 0.3776 0.1794 0.6736 0.6808
ResNet-50 0.399 0.1819 0.6539 0.6595
ResNet-101 0.4059 0.1824 0.6463 0.6563

Table 2: Performance of our method with different backbone networks.

images containing this object category.
Specifically, we first employ the ResNet18 [6] backbone trained with EMD loss (resp.,

weighted EMD loss) to estimate composition mean scores for images in the testing set. Then,
for each category, we collect the ground-truth/predicted composition mean scores of images
containing this object category. After that, we visualize the distribution of composition mean
score for each category in a similar way to Section 3. As illustrated in Figure 5, for each ex-
ample category, we show three types of composition mean scores: ground-truth, predicted
by the model trained with EMD loss, predicted by the model trained with proposed weighted
EMD loss. Comparing the results of EMD loss and weighted EMD loss, we can see that
training with weighted loss produces a much more unbiased distribution of composition
mean score, which also looks closer to the ground-truth distribution. For example, for the
results on water images in Figure 5, the ground-truth composition mean scores are approxi-
mately evenly distributed across four bins, while the composition mean score distribution of
using EMD loss is concentrated in the intervals of [2,3) and [3,4). Differently, for the model
trained with weighted EMD loss, the predicted composition mean score distribution is rela-
tively balanced on all four bins, from which we can validate the advantages of the proposed
weighted EMD loss on eliminating content bias qualitatively.

5 Implementation Details
We implement our model and conduct all experiments using Pytorch [15]. During the train-
ing stage, the backbone weights are pretrained on ImageNet [4] and other layers are ran-
domly initialized. We adopt the Adam optimizer [10] and set the batch size as 16. Then, the
initial learning rate of the layers in the backbone and the layers in the additional modules
(e.g., SAMP, AAFF, and prediction head) are set as 1e−6 and 1e−4, respectively. This is be-
cause we noticed that using a small learning rate on the backbone results in easier and faster
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Figure 7: Results of our model using each individual composition pattern (pattern 1∼ 8).
Pattern 0 means the simplest pattern with only one partition. Multi means using all 8 patterns.
optimization in our experiments. Moreover, the learning rate of all layers is annealed by 0.1
every time the training loss plateaus. To prevent overfitting, a dropout rate of 0.5 is applied
on each fully-connected layer of the additional modules, and we set weight decay as 5e−5

for all layers in our network.

6 Hyper-parameter Analysis
There is a trade-off parameter λ before the attribute loss in Eq.(1) of the main text. We
set the hyper-parameter according to cross-validation by splitting 20% training samples as
validation set. We vary λ from 0 to 10 and present the results in Figure 6(a), in which we
report Mean Squared Error (MSE) and Spearman’s Rank Correlation Coefficient (SRCC).
Comparing the result without attribute loss (λ = 0) and the result with λ = 0.1, we can
see a clear gap between their performance. Therefore, we set λ = 0.1 by default for all
experiments. Moreover, the experimental results demonstrate that our method is robust when
setting λ in the range of [0.01,10].

7 Different Training Set Size
As mentioned in Section 3 of the main text, we split the CADB dataset into training (8,547)
and test (950) sets. To study the correlation between the test performance of our model
and the training set size, we randomly select a certain amount of samples from training
set to train the model and evaluate on the same test set. We vary the number of training
samples from 1,000 to 8,000 with the step length of 1,000 and report the results in Figure
6(b) using MSE and SRCC. When the training set size increases, the model performance
improves significantly, yet the performance growth slows down. When the training size gets
larger than 8,000, the performance gain becomes negligible, demonstrating that our model
capacity is compatible with the CADB dataset.

8 Different Backbone Network
We evaluate our method with different backbones on the CADB dataset and report results
in Table 2. It can be see that our method achieves the best result using ResNet-34 and the
performance drop using ResNet-50 or ResNet-101 might be caused by overfitting. Given
that ResNet-18 is efficient and can already receive good results, we adopt ResNet-18 as the
default backbone in our method.
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Patterns MSE↓ EMD↓ SRCC↑ LCC↑
Patterns 1∼ 8 0.3867 0.1798 0.6564 0.6709

Patterns 1∼ 11 0.3876 0.1800 0.6558 0.6701

Table 3: Results of using more composition patterns. Based on the existing eight composi-
tion patterns, we add three more composition patterns (see Figure 10) in our model.

Human Rater MSE↓ EMD↓ SRCC↑ LCC↑
1 0.1951 0.1403 0.8925 0.8944
2 0.4286 0.2089 0.7694 0.7811
3 0.5345 0.2328 0.7688 0.7705
4 0.1606 0.1369 0.8990 0.9043
5 0.1814 0.1430 0.8874 0.8934

SAMP-Net 0.3867 0.1798 0.6564 0.6709

Table 4: Comparison with human raters on the CADB dataset.

9 Effectiveness of Composition Pattern
Recall that we design eight composition patterns (see Figure 3(a) of the main text) for com-
position evaluation from different perspectives. To study the effectiveness of each pattern,
we conduct experiments on our SAMP-Net with only a single pattern in SAMP. Moreover,
we compare with the simplest pattern with only one partition (i.e., global pooling), which
is referred to as pattern 0. The experimental results are summarized in Figure 7, where we
report MSE and Linear Correlation Coefficient (LCC). It can be seen that all the models with
the designed patterns, including single pattern and multi-pattern, perform better than pattern
0, which indicates that our designed patterns are meaningful and helpful for composition
assessment. Among the results using a single pattern, we find that pattern 5 performs best in
terms of MSE, which might because visually important objects are often placed at the cen-
ter of images. Furthermore, the multi-pattern model beats all single-pattern models, which
again demonstrates the effectiveness of our SAMP module.

10 Using More Composition Patterns

Figure 10: Three additional
composition patterns.

Apart from existing eight patterns (see Figure 3(a) of the main
text), to evaluate the effect of learning more diverse rules, we
design three additional composition patterns in Figure 10. Pat-
tern 9 is inspired by gloden ratio [14]. Pattern 10 and pattern
11 concern more complex composition patterns. The results in
Table 3 implies that using more composition patterns cannot
achieve further improvement. We would like to explore other
more composition patterns in the future.

11 Comparison with Human Ratings
We have shown that the proposed method outperforms existing methods in the Section 5.3 of
the main text. To further analyze the capability of our method, we evaluate the performance
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Figure 8: Visualization results of the proposed method on our CADB dataset. We show
the estimated pattern weights and the largest weight is colored green. We also show the
ground-truth/predicted composition mean score in blue/red.
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Figure 9: Visualization results of the proposed method on the PCCD dataset [2]. We show
the estimated pattern weights and the largest weight is colored green. We also show the
predicted composition mean score in red.
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of each individual raters by comparing with the ground-truth in the same way. Unlike our
model which predicts a composition score distribution, each rater only has one score for each
test image, resulting in an one-hot score distribution. We summarize the results in Table 4.
Interestingly, our method can outperform two of five human raters in terms of MSE and
EMD. This may be due to the fact that our model is trained using the ratings of all raters and
the prediction is close to the average distribution. However, considering SRCC and LCC,
which indicate the ability to correctly rank different images according to their composition
quality, we see that there is still a clear gap between our model and human raters.

12 Additional Visualization Results

Our SAMP-Net can facilitate composition assessment by integrating the information from
multiple patterns and provide constructive suggestions for improving the composition qual-
ity. So we present additional examples in Figure 8, in which we show the input image, its
saliency map, its ground-truth/predicted composition mean score, and its pattern weights.
We refer to the composition pattern with the largest weight as the dominant pattern of the
input image. For each pattern, we present two example images with this pattern as dominant
pattern and draw this pattern on the image.

As discussed in Section 5.4 of the main text, the dominant pattern unveils from which
perspective the input image is given a high or low score. For example, in Figure 8, in the
right column of the second row, the vertical line of pattern 2 is parallel to the bird of the
image, which looks more visually assuring to viewers. In the left column of the fourth row,
pattern 4 implies that the knife is organised based on the diagonal line in the image. Since
such images create a sense of visual balance and stability for viewer, the model estimates a
relatively high score for them. On the contrary, in the left column of the second row in Figure
8, the carvings slightly deviate from their symmetrical axis under pattern 2. So the low score
implies that maintaining horizontal symmetry may help to improve the composition quality.
In the left column of the fifth row, per the relatively low score under pattern 5, the surfer is
suggested to be moved towards the center. Those examples further validate the utility of our
model for providing interpretable composition guidance.

Furthermore, we also test our model on some images outside the CADB dataset to show
the generalization ability. Specifically, we test our model on some images collected from
PCCD dataset [2] and show the results in Figure 9. Although the PCCD dataset contains
the overall composition score, they only present one reviewer’s composition rating for each
image and this reviewer (an anonymous website visitor) may be unprofessional, rendering
the composition annotations of PCCD very noisy. Thus, we only report the composition
score estimated by our model in Figure 9. We can see that our model can reasonably predict
composition mean scores.
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