
Supplementary Material
MUSE:Feature Self-Distillation with Mutual
Information and Self-Information
Yu Gong*2

gongyug@sfu.ca

Ye Yu*1

yu.ye@microsoft.com

Gaurav Mittal1

gaurav.mittal@microsoft.com

Greg Mori2

mori@cs.sfu.ca

Mei Chen1

mei.chen@microsoft.com

1 Microsoft
2 Simon Fraser University

1 Theoretical Details
The proposed MUSE incorporates two essential components—mutual information (MI) and
self-information (SI). As discussed in the main manuscript, we utilize neural networks to
estimate both MI and SI based on the state-of-the-art MI neural estimator. We describe here
in more detail the MI neural estimator and its implementation. One may refer to Mutual
Information Neural Estimation (MINE) [1] and DeepInfoMax [3] for more details if interested.
Here, we briefly give an introduction on MI neural estimator and the way we use it to formulate
our own MI and SI estimators.

Let X and Y denote two random variables with marginal densities X ∼ p(x) and Y ∼ p(y),
respectively. One form of the MI between X and Y is the Kullback–Leibler (KL) divergence
between the joint and the product of the marginals .

I(X ;Y) = DKL(p(x,y)||p(x)p(y)) (1)

KL divergence representation. Two types of representation of KL divergence can be used
to formulate the bound of MI. One is to use Donsker-Varadhan representation [2],

I(X ;Y)≥ Ep(x,y)[T]− log
(
Ep(x)p(y)[e

T]
)

(2)

Another one is f -divergence representation [4],

I(X ;Y)≥ Ep(x,y)[T]−Ep(x)p(y)[e
T−1] (3)

c© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

* Authors with equal contribution. Work was done when Yu Gong was a research intern at Microsoft.

Citation
Citation
{Belghazi, Baratin, Rajeshwar, Ozair, Bengio, Courville, and Hjelm} 2018

Citation
Citation
{Hjelm, Fedorov, Lavoie-Marchildon, Grewal, Bachman, Trischler, and Bengio} 2019

Citation
Citation
{Donsker and Varadhan} 1983

Citation
Citation
{Nowozin, Cseke, and Tomioka} 2016

2 SUPPLEMENTARY: MUSE

MINE [1] proposed to use neural networks φ to approximate the function Tφ (x,y) : Ω 7→R in
R.H.S. of Eq. 2 and Eq. 3. It is empirically shown to effectively bound the MI.

Multi-view formulation. If X and Y are the features in a neural network, there is a non-
linear mapping modeled by the hidden layers that Y ∼ g(X). Let X (1) and X (2) be dif-
ferent views of X and encoded by arbitrary functions g1 and g2. It is shown in [5] that
maxg1,g2 I

(
g1(X (1));g2(X (2))

)
can serve as a lower bound of maxg I(X ;g(X)). Therefore, a

multi-view formulation on X or Y can be constructed to allow more modeling flexibility,
while maximizing this new lower bound. We follow DeepInfoMax [3] to estimate MI. It
employs the global and local structure to better exploit the patterns from different levels in a
convolutional neural network.

2 Experimental Details
All implementations are conducted in PyTorch. For all the models with official or publicly
verified code, we rerun the baseline experiments on our computing machines. For those
without code, we re-implement them based on the details provided by the original papers.

2.1 MI estimator
Empirically, we find that the realization of the MI estimator in DeepInfoMax [3] provides
more stable and better performance on intermediate features. Hence, we follow [3] to
formulate a global-local view to prioritize global or local information flexibly. It is based on a
Jensen-Shannon MI estimator (Eq. 3) using the softplus function,

Î(JSD)
θ ,φ (Fi;Fk) := EP[−sp

(
−Tφ (fi, fk)

)
]−EP̃[sp

(
Tφ (fi, fk)

)
] (4)

where θ and φ are the parameters of the backbone network and MI neural estimator, re-
spectively. Fk is the feature of the base module. P is the joint density p(fi, fk) directly
drawn from the network. P̃ is the product of the marginal densities. sp is the softplus
function. To sample from P̃, one trick1 is used to avoid extra sampling of the dataset —
rotating the feature map by one instance to create a new permutation of instances, so each
feature is now paired with the feature from another image, rather than drawn from the
joint density. For feature F , the implementation of its reordered samples in PyTorch is
F_prime = torch.cat((F[1:], F[0].unsqueeze(0)), dim=0).

To estimate MI, for each feature of interest Fi, a global-view discriminator and a local-
view discriminator are constructed between Fi and the base feature. In the following, we
introduce the experimental settings in Section 4.1 of main manuscript — Module 4 as the
base, and estimating MI between Module 1-3 and Module 4 with global and local structure,
as mentioned in Section 3.2 of main paper. In MUSE, MI is estimated between intermediate
features and last feature of a CNN, though the original MI estimators are only utilized for
input-output pair.

Global Discriminator. Before concatenating fi with f4, two downsampling convolutional
layers with a kernel size of 3 are used to reduce the dimensionality. For the case of using
Module 4 as the base, f4 is the output of the last convolutional layer. Then, the downsampled

1https://github.com/DuaneNielsen/DeepInfomaxPytorch

Citation
Citation
{Belghazi, Baratin, Rajeshwar, Ozair, Bengio, Courville, and Hjelm} 2018

Citation
Citation
{Tschannen, Djolonga, Rubenstein, Gelly, and Lucic} 2020

Citation
Citation
{Hjelm, Fedorov, Lavoie-Marchildon, Grewal, Bachman, Trischler, and Bengio} 2019

Citation
Citation
{Hjelm, Fedorov, Lavoie-Marchildon, Grewal, Bachman, Trischler, and Bengio} 2019

Citation
Citation
{Hjelm, Fedorov, Lavoie-Marchildon, Grewal, Bachman, Trischler, and Bengio} 2019

SUPPLEMENTARY: MUSE 3

fi and f4 are concatenated and fed to two 512-unit fully-connected (FC) layers to produce a 1
dim. scalar.

Local Discriminator. We concatenate the global feature vector (f4 in our case) with feature
map fi at every location. And then two downsampling convolutional layers with a kernel size
of 3 is used to reduce the dimensionality of the concatenated feature map to a scalar value
(1-dimensional).

Self Discriminator. To estimate SI, we use the same strategy as global discriminator but
with two features from an identical distribution. We first concatenate the features and then
feed the feature to two 512-unit FC layers to produce a scalar. We do not use the global-local
view for self-information, since the input features are from the same distribution.

The discriminator Tφ (fi, fk) is used to score the feature pair. The MI is estimated by the
summation of Eq. 4 in both global and local views. The self-information is estimated by the
single view of the self discriminator.

2.2 Self-distillation
Model Architecture. In all the backbone architectures including a feature extractor and
some task-specific heads, we first decompose the feature extractor into multiple modules (four
in our settings). In each module, the intermediate feature is first fed to a bottleneck layer to
have a consistent dimension (512-dimensional). Then the same task-specific heads will be
added to the output of each module to perform the same task individually. The entire network
is jointly trained using gradient-based optimization. The training details can be found in the
Experiments section of the main manuscript.

For different backbone networks, the decomposition might be different based on the actual
architectures. We aim to simplify the decomposition—if the backbone network has explicit
stages like ResNet and the number of stages is the same as the length of decomposition,
we directly decompose each stage as a module. For those without obvious decomposition
configuration, we decompose them at the point where the feature map size is changed, possibly
making different features more diverse in terms of size. As pointed out in Section 4.1 in main
paper of model decomposition, for classification backbone networks, our experiments are
based on a 4-module decomposition. The decomposition points of each backbone network
are (we use the original terms of the building blocks for each architecture):

• VGG19: layer 6, layer 11, layer 16;

• ResNet: stage 1, stage 2, stage 3;

• DenseNet121: stage 1, stage 2, stage 3;

• NASNet: cell layer 3, cell layer 6, cell layer 9;

• EfficientNet-B0: block 4, block 7, block 15;

Baselines. For self-distillation on image classification in main manuscript Section 4.1,
we choose two lines of experiments to validate that MUSE effectively outperforms other
state-of-the-arts. We first compare MUSE with BYOT as it shares the same idea of module
decomposition. As the authors did not release their code, our implementation is based on a

4 SUPPLEMENTARY: MUSE

public re-implementation code2 and follows reported details to reproduce all numbers; We
also compare with other state-of-the-art self-distillation methods. We run the released code
with their hyperparameter settings, or directly adopt the reported numbers.

2.3 Online / Offline distillation
In online / offline distillation settings , MUSE is calculated between the intermediate features
of the student networks (Module 1-3) and the last feature of the teacher networks. Note that
only the last feature of the teacher network is used. For online distillation, we follow the
conventional settings: two identical networks and two different networks as teacher-stduent.
We report the average accuracy for two identical networks. We consider the Net 2 as teacher
network. On CIFAR100, resnet with MUSE is trained using SGD with momentum 0.9, weight
decay 5e-4, batch size 64, and the learning rate initialized as 0.05 and divided by 10 after
epoch 150, 180 and 210; ShuffleNetV1 with MUSE is trained using SGD with momentum
0.9, weight decay 5e-4, batch size 64, and the learning rate initialized as 0.01 and divided
by 10 after epoch 150, 180 and 210. For offline distillation, we freeze the pretrained teacher
network. On CIFAR100, ResNet with MUSE is trained using SGD with momentum 0.9,
weight decay 5e-4, batch size 128, and the learning rate initialized as 0.1 and divided by 10
after epoch 150, 180 and 210. The decomposition is only done for the student network (resnet
and ShuffleNet):

• ResNet: stage 1, stage 2, stage 3;

• ShuffleNetV1: Maxpool, stage 2, stage 3;

References
[1] Mohamed Ishmael Belghazi, Aristide Baratin, Sai Rajeshwar, Sherjil Ozair, Yoshua

Bengio, Aaron Courville, and Devon Hjelm. Mutual information neural estimation. In
ICML, 2018.

[2] M. D. Donsker and S. R.S. Varadhan. Asymptotic evaluation of certain markov process
expectations for large time. iv. Communications on Pure and Applied Mathematics, 36
(2):183–212, 1983.

[3] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. In ICLR, 2019.

[4] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural
samplers using variational divergence minimization. In NeurIPS, 2016.

[5] Michael Tschannen, Josip Djolonga, Paul K. Rubenstein, Sylvain Gelly, and Mario Lucic.
On mutual information maximization for representation learning. In ICLR, 2020.

2https://github.com/luanyunteng/pytorch-be-your-own-teacher

