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1 Additional Implementation Details
Training. We provide training details here as noted in Sec. 4.2 of our paper. Training
and inference were both conducted on a TITAN RTX GPU. Following STM-cycle [6], we
downsample the input resolution by half to 240×427 and upsample the output segmentation
using nearest interpolation for efficiency. We train with a batch size of 4 videos, sample 3
frames per video, treat the first frame in temporal order as the annotated frame, and increase
the maximum sampled temporal skip between frames every 5 epochs. We use data augmen-
tation to train all models (see below for details). We set λ = 1 for both the Mask Flow Loss
and segmentation network loss. To implement the Visual Flow Loss (Eq. 4), we first mask
the previous frame, then warp for greater efficiency; this does not affect results. All three
training losses are equally weighted. We tuned the teacher-forcing hyperparameter per vali-
dation set, with p = 0.5 for DAVIS17 and p = 1 for YouTubeVOS. We set hyperparameters
Es = 240,Ea = 5. We optimized all model parameters with the Adam optimizer [5] with
learning rate 10−5,β1 = 0.9, and β2 = 0.999.

Data Augmentation. As mentioned above, we use data augmentation during model train-
ing. Augmentations are applied per video sequence; in a given batch, all sampled frames
from the same video are augmented in the same way. Only geometric augmentations are
applied to the corresponding ground-truth masks. Following STM-cycle [6] for fair com-
parison, our data augmentations include random affine transformations, scaling, horizontal
flips, random added noise, and random contrast jittering. All augmented images are then
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pre-processed via channel-wise normalization using the ImageNet [1] means and standard
deviations. In inference, we only perform pre-processing, and not augmentation.

Training Epochs and Early Stopping. As discussed in Sec. 3.4 of our paper, we set the
two-stage training hyperparameters to Es = 240,Ea = 5. We train all models in all experi-
ments for a total of 480 epochs, and we use the DAVIS17 [8] validation score as the stopping
criterion for early stopping. Just as with reported results in the paper, we use the official
DAVIS17 evaluation code [8] to calculate the stopping criterion validation scores. We tune
the teacher-forcing hyperparameter per validation set. Due to YouTubeVOS [9] validation
ground-truth only being available on the official challenge server, rather than using it as a
stopping criterion, we still use the DAVIS17 validation set as the stopping criterion and eval-
uate the two highest-performing models on the YouTubeVOS validation evaluation server to
select the best model. The final early-stopped model for DAVIS17 was trained for a total of
314 epochs; the final model for YouTubeVOS was trained for a total of 376 epochs.

2 End-to-End Segmentation Method Details
As noted in Sec. 3.3 of our paper, we now discuss additional details of the end-to-end seg-
mentation method (in particular, contextualizing the segmentation network). To segment
frame t, prior work STM’s [4] query encoder on frame t regresses a key and value embed-
ding. The key queries, via matrix multiplication, a memory bank of encoded previous frames
and masks from time 1 to t−1; the decoder D uses the value embedding and memory read
result to predict the final mask. STM-cycle [6] introduces cycle-consistency by sampling
frames in temporal and reverse temporal order to reduce error propagation. While this ap-
proach improves performance, it still struggles with mask detail and temporal consistency.
Therefore, our end-to-end method uses the flow module’s output flow field to refine the final
segmentation via concatenation in the decoder. Following optical flow works [2, 3], we use
the Markov property that only the previous frame Xt−1 and current frame Xt are needed to
predict visual warping.

3 Analysis of Hyperparameter Robustness
As mentioned in Sec. 3.4 of our paper, we perform hyperparameter robustness analysis for
the associated hyperparameters of the teacher-forcing and two-stage training mechanisms in
Tables 1 and 2.

We analyze the effect of varying each of our main hyperparameters: (1) the teacher-
forcing probability p, (2) the alternating freezing frequency Ea for two-stage training, and
(3) weighting of the Mask Flow Loss, Visual Flow Loss, and segmentation loss. We con-
duct all of these experiments on the DAVIS17 [8] validation set using the standard Jac-
card (IOU) mean J and combined J&F scores. We also analyze teacher-forcing on the
YouTubeVOS [9] validation set using the standard seen and unseen JS ,JU and global mean
G scores. We only vary teacher-forcing for YouTubeVOS because the models for DAVIS17
and YouTubeVOS only differ in their teacher-forcing hyperparameter.*

*Among all of our submissions on the official YouTubeVOS evaluation server, only 2 submissions were used
for model selection. All others were solely for the hyperparameter robustness analysis in Table 1(b).
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Teacher-forcing probability. To analyze the sensitivity of our method to teacher-forcing,
we vary p incrementally and keep the other hyperparameters constant, with Ea = 5 and
equal weighting of all three losses. We show these results on DAVIS17 in Table 1(a) and on
YouTubeVOS in Table 1(b).

First, we observe for both datasets that higher values of p tend to outperform lower values
(and are less sensitive), which we hypothesize is because the flow module can learn accurate
flow fields from warping ground-truth segmentations that can apply to the model’s learned
segmentations, while lower values of p may yield distorted flow fields when previous masks
are not yet reasonable early on in training.

In Table 1(a), notice that the J&F score increases as p increases up until p = 0.5 as
used in our work, after which performance has a slight decrease. This sensitivity is clearly
stronger with p small than with p large, indicating the importance of having some degree of
teacher-forcing. We intuitively see that with p close to 0, the flow module may encounter
too much noise from the previous segmentation predictions (mostly early in training) to
learn optimally. In Table 1(b), notice a similar trend where scores tend to increase with p;
however, p = 1 has a slight advantage over other incrementally lower values, though not
by a large margin. Especially with the small deltas among higher values of p, we believe
some of the differences can be attributed to training variability. p also appears to impact
the generalization to unseen classes more than those in seen classes, which we hypothesize
stems from the same reason discussed above that higher values of p are less sensitive than
lower values of p.

We also show results using annealed teacher-forcing, where p begins at 1 and decreases
by 0.05 every 5 epochs until it plateaus at p = 0. We hypothesize that this does not do very
well because the rate of decrease in p may not be in sync with the learning progress of the
flow module; we leave investigating a learned modulating mechanism for p to future work.

With this discussion in mind, we underscore that teacher-forcing is only used during
training (not inference), meaning that higher teacher-forcing values are training hyperpa-
rameters that do not impact the method at inference. Only the model’s previous predicted
masks are used in inference, and we find empirically that noisiness of predicted masks is not
a big issue at this stage. Even in extreme cases like jump-cuts, predicted masks are less ideal,
but still reasonable (see Figure 4).

Overall, we outperform the state-of-the-art STM-cycle [6] (whose J = 68.7,J&F =
71.7) across all values of p in Table 1(a), and we similarly do so for YouTubeVOS across
reasonable values of p (compared to [6], whose JS = 71.7,JU = 61.4,G = 69.9).

Alternating freezing frequency. To analyze the sensitivity of our method to the frequency
of alternating freezing of the segmentation weights, we vary the freezing frequency Ea and
keep the other hyperparameters constant, with p= 0.5 and equal weighting of all three losses.
We show these results in Table 2(a).

Notice that the performance increases as Ea increases until 5, after which it decreases.
We also show the two extremes of not freezing the segmentation weights at all (Ea = 0), and
always freezing (Ea =∞, the weights are never unfrozen). This trend shows that a reasonably
small value of Ea = 5 as in our work balances allowing the flow module to learn from the
segmentation weights independently, while also letting the segmentation model learn from
the warped masks to refine the final prediction. Overall, the variation is not very large,
suggesting that the model is not extremely sensitive to the freezing frequency.
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Teacher-forcing probability p J% J&F%

0.0 69.4 72.0
0.25 69.8 72.2
0.5 70.6 73.2
0.75 69.8 72.7
1.0 70.2 73.0
anneal -0.05 every 5 epochs until p = 0 69.5 72.0

(a)
Varying teacher-forcing on the DAVIS17 validation set.

Teacher-forcing probability p JS% JU% G%

0.0 71.1 59.6 68.7
0.25 71.5 62.0 69.8
0.5 71.9 62.7 70.5
0.75 71.4 63.6 70.9
1.0 71.7 64.0 71.1
anneal -0.05 every 5 epochs until p = 0 71.9 60.9 69.4

(b)
Varying teacher-forcing on the YouTubeVOS validation set.

Table 1: Analysis of the effect of teacher-forcing hyperparameter choice on our method.
(a) shows varying of the teacher-forcing probability p on the DAVIS17 validation set while
holding Ea = 5 and equal loss weighting constant. (b) shows the same for the YouTubeVOS
validation set (all models were early-stopped using DAVIS17). In (a), J is the Jaccard (IOU)
mean and J&F is the combined Jaccard and contour F-score; in (b), subscripts S,U denote
seen and unseen classes in training and G is the global mean.

Loss weighting. To analyze the effect of weighting the three losses used to train our
method, we vary the loss weights while keeping the other hyperparameters constant, with
p = 0.5 and Ea = 5. We show these results in Table 2(b). First, we write our combined loss
function as

L= λMFLMF +λV FLV F +λsegLseg, (1)

where LMF is the Mask Flow Loss (MFL), LV F is the Visual Flow Loss (VFL), Lseg is
the segmentation loss, and λMF ,λV F ,λseg each denotes the weight for the corresponding
subscripted loss. As noted in the paper, LMF ,Lseg are each a combination of the cross-
entropy and mask IOU losses. Following [6], which equally weights the cross-entropy and
mask IOU components of the segmentation loss, we keep these weights equal (both 1) for
Lseg. However, we still vary the cross-entropy and mask IOU weights for LMF ; we call these
weights λMF,C and λMF,I , respectively.

Overall, we find that the the optimal combination of weights is equally weighting all
losses (first row). There does not appear to be extreme sensitivity to the different combina-
tions of weights; however, it does appear that fully weighting the segmentation loss, as well
as placing higher weights on the Visual Flow Loss and cross-entropy component of the Mask
Flow Loss may have a slight advantage.
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Figure 1: Color-coding scheme used to visualize flow fields in this paper. Pixel displace-
ments colored on the left roughly correspond to the vectors in the illustration on the right.
The center color (white) indicates no motion. We intensify the flow fields in our paper to
better visualize the detailed displacements. Best viewed in color.

4 Additional Experiments

As mentioned in the paper, our method can be integrated into any state-of-the-art segmen-
tation network. Thus, while we primarily integrate our method with STM-cycle [6] in this
work, we further experiment with an additional backbone model, AGSS-VOS [7], to illus-
trate that our method complements other networks more generally. Since [7] already uses an
optical flow module [3], we thus add our weakly-supervised losses to the training procedure.
On DAVIS17 [8] validation, our method using [7] as the backbone model achieves 68.1%
J&F , 65.5% J , and 70.7% F , as compared to [7]’s 67.4% J&F , 64.9% J , and 69.9% F .
Note that we performed these experiments without any hyperparameter tuning.

5 Optical Flow Color-Coding

As discussed in Figure 4 of our work, following FlowNet 2.0 [3], we color-code our flow
fields using polar coordinate displacements. The color-coding scheme is shown in Figure 1.
See the caption for details.

6 Additional Qualitative Results

6.1 Qualitative Ablations: Visual Flow Loss

As mentioned in Sec. 3.2 of our paper, the Visual Flow Loss (VFL) in our foreground-
targeted approach only penalizes differences between the masked warped previous frame and
masked target frame, as opposed to their unmasked counterparts. Because of camera motion
and other background activity, removing this masking can cause the model to optimize for
consistency in the background, at the cost of not learning good flow fields for the foreground
object of interest. We further illustrate this with a qualitative example in Figure 2. Without
masking the VFL, we see that the flow field does not learn an object-targeted flow field,
leading to a partially segmented object. This illustrates the importance of masking the VFL,
as we do in our method.
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(a) Masking (b) No masking
Figure 2: Qualitative ablation for masking the Visual Flow Loss (VFL). Our VFL only pe-
nalizes the differences between the masked warped previous frame and masked target frame.
With masking in (a), our flow field accurately captures target object motion, whereas without
masking in (b), we only partially capture object motion, which can result in object confusion
or partial segmentations (second row). Best viewed in color.

We also note that this foreground masking means some regions of the flows far from the
object are not as meaningful. However, this does not impact the quality of object warping,
as seen in the warped frames (Figure 4, c3 in our paper and Figure 3, c3 here); the warped
masks preserve details from the previous frame well and propagate them to refine a strong
final segmentation (c).

6.2 Additional Qualitative Comparisons
Here, we show some additional qualitative results of our method. Figure 3 shows our model’s
improvements over STM-cycle [6] in segmentation detail, while Figures 5 and 6 show our
model’s improvements over [6] in temporal consistency.

In Figure 3, we extend Figure 4 in our paper and show additional examples of where
our flow module’s flow fields capture detailed motion and object boundaries in order to
preserve object detail and consistency. In row 1, notice how the flow field in (c1) captures the
movement of the hand, which enables a more complete segmentation in (c). The flow field in
row 2 discretely captures the two dogs, which allows for propagating their masks separately
and preventing detail artifacts that are present in (b). In row 3, despite an occlusion, our
model warps both the object down-left (yellow) and occlusion up-right (red) to steadily shift
the object position. In row 4, the overlapping objects are segmented properly due to the
flow field that captures their fast motion. (c3) also shows the object detail preserved in the
warping operation. In all cases, notice that our method preserves segmentation detail and
consistency as compared to the state-of-the-art STM-cycle [6].

As noted in Sec. 4.5 of our paper, Figure 5 qualitatively compares our approach’s tempo-
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(a) Ground-truth (b) STM-cycle [6] (c) Ours (c1) Flow field (c2) Warp diff. (c3) Warped frame

Figure 3: Additional qualitative comparisons with STM-cycle [6] on DAVIS17 validation (a,
b, c), and our method’s intermediate outputs (c1-3). Following [3], we color-code flow fields
(c1) with polar coordinate displacements as detailed in Figure 1. (c2) brightens pixels that
exist in the previous, but not the warped mask, highlighting motion that corresponds to the
flows. (c3) shows that our warping operation accurately preserves object detail. In row 1, our
flow field (c1) captures the detail in the small hand movement, preserving the structure of the
hand. In row 2, our flow field captures the large movements of the dogs discretely, enabling
in (c) the accurate tracking of the dogs as separate entities across time and preservation of
detail as compared to (b). In row 3, despite an occlusion, our model warps both the object
down-left (yellow) and occlusion up-right (red) to steadily shift the object position. In row
4, our flow field also captures the fast motions of the wrestlers as they overlap, allowing
accurate segmentation of their boundaries. Best viewed in color.

ral consistency to that of STM-cycle [6] in videos from the DAVIS17 and YouTubeVOS vali-
dation sets. Owing to our visual warping for mask propagation, our method exhibits stronger
temporal consistency for predicted object masks despite challenges of fast and abrupt object
motion (video 1) and distractor objects with similar appearances (video 2).

In Figure 6, we extend Figure 5 and illustrate additional cases where our model exhibits
object-level consistency (videos 1 and 2) and detail preservation and consistency (videos
3 and 4). Notice how in contrast to STM-cycle [6], our model can accurately track the
correct boundaries of objects, such as the person’s limbs in video 1 despite fast motion, and
the whole panda body in video 2 despite camera motion blur and occlusions. Owing to our
visual warping mechanism, we can also preserve stronger detail, as in the fins of fish in video
3 despite similarity between the fish and similarity to the background, and the full upper-left
and right legs of the spider in video 4 throughout very small movements.

6.3 Error Cases and Analysis

We also examine some errors made by our method in Figure 4. In the first video, note that
the last four frames are temporally consecutive in the dataset. These frames exhibit abrupt
jump-cuts with drastic discontinuities in the visible parts of the object, as well as extreme
motion blur. Even though visual warping can handle relatively large object motions, it does
expect frames to be reasonably continuous—thus, it is difficult to produce felicitous warping
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Figure 4: Error analysis of our method with examples of failure cases from YouTubeVOS
validation (first video) and DAVIS17 validation (second video). In the first video, note that
the last four frames are temporally consecutive in the dataset. They have abrupt jump-cuts
that create discontinuities in object appearance, as well as extreme motion blur, both of
which are difficult for flow fields to handle. In the second video, the reference mask in
the first frame does not contain object details such as the wheel spokes; these details are
challenging for our method to propagate through time because they were only visible in the
middle frames. Best viewed in color.
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Figure 5: Qualitative results on DAVIS17 (top) and YouTubeVOS (bottom) validation show-
ing our method’s temporal consistency. We track objects and details well across time despite
fast motion (top) and distractors (bottom), whereas state-of-the-art STM-cycle [6] has dete-
riorating results, confusing the dogs in the first video and tracking extra fish in the second.
Best viewed in color.

due to these discontinuities. Despite the jump-cuts, our method still captures much of the
object structure. In the final frame, we see an increase in motion blur that causes both the
blur and the object to be equally transparent; this makes the object boundary ambiguous.
This ambiguity in object motion is challenging for visual warping; as shown, our method
fails to predict the middle portion of the object where this blur is most pronounced.

In the second video, the initial reference mask for the far-away object does not contain
object details such as the bike’s wheel spokes. These details are only introduced in the middle
frames, once the object nears the camera. Since these details are only visible in the middle
frames of the video and were not provided in the initial reference mask, they are difficult
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Figure 6: Additional qualitative results on DAVIS17 (videos 1 and 3) and YouTubeVOS
(videos 2 and 4) validation showing our method’s temporal consistency. Videos 1 and 2 show
object-level consistency, while videos 3 and 4 show detail-level consistency. Our method
tracks objects and details well across time despite several challenges: overlapping objects
with fast motion (video 1), camera perspective changes, motion blur, and occlusions (video
2), interaction between detailed, but visually similar objects and the background (video 3),
and detailed, but very small object articulations (video 4). In contrast, the state-of-the-art
STM-cycle [6] has deteriorating results, such as the lost human leg in video 1, failure to
identify the panda after occlusions and camera motion in video 2, missing fin details and
confusion with the bottom fish in video 3, and the fragmented upper-left and right legs de-
spite little movement in video 4. Best viewed in color.

for our flow module to propagate through time if the segmentation module does not capture
them once they do appear. Our method thus struggles to capture these details, even though it
still successfully propagates the overall object and larger details like the gaps in the wheels.
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Alternating freezing frequency Ea J% J&F%

0∗ 70.3 72.8
1 70.1 73.0
5 70.6 73.2
10 70.0 72.8
20 69.6 72.4
∞∗ 70.2 72.6

(a)
Varying freezing frequency on the DAVIS17 validation set.
∗0 indicates no freezing of segmentation weights at all,

while ∞ indicates segmentation weights are always frozen.

MFL, VFL, segmentation loss weights
λMF,C λMF,I λV F λseg J% J&F%

1.0 1.0 1.0 1.0 70.6 73.2
1.0 1.0 1.0 0.5 69.8 72.5
0.5 0.5 0.5 1.0 70.4 73.2

0.25 0.25 0.5 1.0 70.1 72.8
0.25 0.75 1.0 1.0 69.9 72.6
0.75 0.25 1.0 1.0 70.4 73.0
0.25 0.75 1.0 0.5 69.8 72.5
0.75 0.25 1.0 0.5 69.6 72.5
0.5 1.0 1.0 1.0 69.9 73.1
1.0 0.5 1.0 1.0 70.0 73.0
1.0 1.0 0.5 1.0 70.1 73.0
1.0 1.0 0.5 0.5 69.9 72.4

(b)
Varying Mask Flow Loss (MFL), Visual Flow Loss (VFL),

and segmentation loss weights on the DAVIS17 validation set.

Table 2: Analysis of the effect of alternating freezing and loss weighting on our method.
Experiments are conducted on DAVIS17. (a) shows alternating Ea while holding p = 0.5
and equal loss weighting constant. (b) shows varying the weights of the losses while keeping
p = 5,Ea = 5 constant. J is the Jaccard (IOU) mean; J&F is the combined Jaccard and
contour F-score.
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