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1 Meta-Training Algorithm
To facilitate understanding of our method we summarize the training of task-specific snippet
classification in Algorithm 1.

2 Ablation Study

2.1 Qualitative Analysis
For visual analysis, we provide two qualitative examples in Figure 1. To visualize the intra-
class variation challenge which our method in particular the proposed query adaptive Trans-
former aims to address, we show some common examples in Figure 2.

2.2 Choice of Video Embedding Layer
We examine which layer of GTAD [1] is a good choice for video snippet embedding. In
particular, we test five GTAD layers. The result curve in Figure 3 shows that deeper layers
are usually better than shallow ones, suggesting that snippet-level contextual information is
useful for action localization. We select the layer-5 as our embedding layer as it has best
cost-effectiveness.
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Algorithm 1 Pseudo code for Snippet Classification
1: Input: Training dataset Dbase, video embedding VE.
2: Output: A query adaptive Transformer with the optimized parameters ψ∗.
3: Initialize params: iterations→ Nit , episodes→ Neps, shot→ K, epochs→ Nech, learn-

ing rate→ ηφ ,ηψ .
4: Training:
5: for i = 0 to (Nech−1) do
6: for j = 0 to (Neps−1) do
7: {S,Slabel ,Q,Qlabel}← Task(Dbase,K)
8: FS← VE(S), FQ← VE(Q)
9:

10: Step 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11: for l = 0 to (Nit −1) do
12: Obtain logits: p← hφ (FS)
13: Compute loss: Lce(p;φ)
14: UPDATE φ : φl+1 = φl−ηφOφLce
15: end for
16: φ ∗← φNit

17:18: Freeze φ ∗→ φ ∗.detach()
19:
20: Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21: ADAPT φ ∗: φ ∗∗← Trans(φ ∗,Xq

se,X
q
se)

22: Obtain logits: p’← hφ∗∗(FQ)
23: Compute loss: Lce(p′;φ ∗∗)
24: META-UPDATE ψ: ψ∗ = ψ−ηψOψLce
25: end for
26: Save the best ψ∗ during meta-training.
27: end for
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Figure 1: Qualitative results of (a) “BreakDancing“ class on ActivityNet and (b) “Throw
Discuss“ class on THUMOS.

Figure 2: Intra-class variation example in the “Doing Fencing” class on ActivityNet-v1.3.
As can be seen, the two videos present clear difference in viewpoint, scene setup, back-
ground, illumination, as well as instance length (c).

Figure 3: Ablation of GTAD video embedding layer in the single-instance setting on
ActivityNet-v1.3. The number in round bracket is the embedding dimension.


