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1 Meta-Training Algorithm

To facilitate understanding of our method we summarize the training of task-specific snippet
classification in Algorithm 1.

2 Ablation Study

2.1 Qualitative Analysis

For visual analysis, we provide two qualitative examples in Figure 1. To visualize the intra-
class variation challenge which our method in particular the proposed query adaptive Trans-
former aims to address, we show some common examples in Figure 2.

2.2 Choice of Video Embedding Layer

We examine which layer of GTAD [1] is a good choice for video snippet embedding. In
particular, we test five GTAD layers. The result curve in Figure 3 shows that deeper layers
are usually better than shallow ones, suggesting that snippet-level contextual information is
useful for action localization. We select the layer-5 as our embedding layer as it has best
cost-effectiveness.
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Algorithm 1 Pseudo code for Snippet Classification

: Input: Training dataset Dj,,., video embedding VEE.

2: Output: A query adaptive Transformer with the optimized parameters y*.
3: Initialize params: iterations — Nj;, episodes — N, shot — K, epochs — N, learn-
ing rate — Ny, Ny.
4: Training:
5: for i=0to (N, — 1) do
6: for j=0to (N,ps—1) do
ik {S7 Stabet; O, Qlabel} «— TaSk(DbaseaK)
8: Fg < VE(S), Fg < VE(Q)
9:
10: St L e
11: for [ =0to (N;—1) do
12: Obtain logits: p < hy (Fs)
13: Compute loss: Le.(p; 9)
14: UPDATE ¢ : ¢y41 =@ — N9V Lee
15: end for
16: 0" <+ o,
Freeze ¢* — ¢*.detach()
S D 2 o
ADAPT ¢*: ¢** + Trans(¢*, X5, X.)
Obtain logits: p* < hy+(Fg)
Compute loss: Le.(p';9**)
META-UPDATE V: ¥* = ¥ — Ny VyLee
end for
Save the best y* during meta-training.
end for
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(b) Thumos Single-Instance

Figure 1: Qualitative results of (a) “BreakDancing* class on ActivityNet and (b) “Throw
Discuss® class on THUMOS.
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Figure 2: Intra-class variation example in the “Doing Fencing” class on ActivityNet-v1.3.
As can be seen, the two videos present clear difference in viewpoint, scene setup, back-
ground, illumination, as well as instance length (c).
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Figure 3: Ablation of GTAD video embedding layer in the single-instance setting on
ActivityNet-v1.3. The number in round bracket is the embedding dimension.




