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The supplementary material is organized as follows: Section A gives the experimen-
tal setting of our experiments; Section B evaluates the class compactness loss; Section C
provides more experiments and analyses for the comparison between domain attention con-
sistency (DAC) and feature distribution alignment (FDA); Section D evaluates our DAC-Net
on single-source to single-target domain adaptation task; Section E investigates how the
number of source domains influences the performance of DAC-Net; Section F further ex-
plores the influence of the amount of target domain data on our DAC-Net; Section G shows
visualizations on feature distribution.

A Experimental Setting

Datasets and protocols. (1) DomainNet is by far the largest and most challenging MSDA
dataset. It has around 0.6 million images and 345 categories. There are six distinct domains
(Clipart, Infograph, Painting, Quickdraw, Real and Sketch) with dramatic domain shift in
image style, color, background, strokes, etc. See Figure 1 in the main paper for example
images. It can be observed that some domains, e.g., Quickdraw and Sketch where shape
information is particularly important, are closer than others like Real and Quickdraw where
color/texture information is essential for the former but not required at all for the latter.
Therefore, to succeed in DomainNet one needs to identify features that are transferable be-
tween the target and source domains. (2) Digit-Five consists of five digit datasets including
MNIST [7], MNIST-M [3], Synthetic Digits [3], SVHN [11], and USPS. Following [12], all
9,298 images in USPS are used as source domain for model training only; on each of the
other four datasets, 25,000 images are used for training and 9,000 images for testing. The
domain shift mainly takes place in font color/style and image background. See Figure A(a)
for example images. (3) PACS [8] includes 9,991 images of seven categories across four
domains, i.e. Cartoon, Photo, Sketch and Art Painting. The domain shift mainly corresponds
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Figure A: Example images from Digit-Five and PACS.

to image style changes. Example images are provided in Figure A(b). We follow the official
train-val splits provided in [8].

For evaluation, one domain is chosen in turn as the target domain while the rest are re-
garded as source domains. A model is trained using the labeled source data and the unlabeled
target data training split, and tested on the test split of the target domain.

Training details. On Digit-Five and DomainNet, we use SGD with momentum to train the
model. The learning rate is updated with the cosine annealing strategy [9]; on PACS, we use
Adam [6] as the optimizer.

On DomainNet, ResNet-101 [5] is used as the CNN backbone, following [12]. We sam-
ple 6 images from each domain at each iteration. The model is trained for 40 epochs, with
an initial learning rate of 0.002.

On Digit-Five, we follow [12] to construct the CNN model with three convolution layers
followed by two fully connected layers. The batch size B is set to 64 for each domain. We
train the model for 30 epochs, with an initial learning rate of 0.05.

On PACS, we follow the setting in [14] and use ResNet-18 [5] as the CNN backbone.
The model is trained for 100 epochs with an initial learning rate of 5e-4 and the batch size
of 16.

B Ablation Study on class compactness Loss

In this section, we first compare our class compactness loss with other related work, and then
discuss whether this loss should be applied to source domain data.

JDDA [1] and HOMM [2] are the most related works to our class compactness loss.
Both of them use parameterized class centers for discriminative feature learning. Instead,
our class compactness loss takes advantage of classification weight vectors, which shows
superior performance to class-center-based methods (see Table 2 in the main paper).

In practice, we can apply L. to both source and target domains and denote it as L., i.e.

B K B
1 S
Y1467 = Ol =Wrlli+ 5 X YA =W s[5 (A)
k=1i=1 !

i=1

Dv\'—

We then compare the L. and L/ in Table A. We can see that applying the compactness loss
to source domains decreases the accuracy by 2.03%. The degradation implies that the com-
pactness for source domain data could even harm the learning of the discriminative features
for the target data.
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Methods Avg
L. (only target data) 91.42
L], (both source and target data) | 89.39
> penalty on the weight W, 90.91

Table A: Ablation study on whether applying the compactness loss to source domain data on
PACS.

Methods | Apply domain alignment loss after Avg
DAC L, after last two residual blocks 90.79
L, after final features 89.27
L, after last two residual blocks 89.75
L, after last three residual blocks 88.75
FDA L, after all four residual blocks 88.78
MMD loss after final features 89.65
MMD loss after last two residual blocks 89.23
MMD loss after last three residual blocks | 89.80
MMD loss after all four residual blocks 89.74

Table B: Ablation study on where to apply the domain alignment loss in the ResNet archi-
tecture on PACS. FDA: Feature Distribution Alignment.

Furthermore, we compare our class compactness loss with another loss which is a ¢,
penalty on the weight matrix W),. We can see from Table A that such a loss works worse
than our class compactness loss. Our class compactness works better because it pulls the
features of target data to the corresponding classification weight vectors, thus possibly away
from the decision boundary.

C Attention Alignment vs. Feature Alignment

In Table B, we compare our DAC loss with different variants of the FDA loss. For a fair
comparison, the experimental setup for all methods is kept the same. For the FDA-based
methods, we impose the domain alignment loss on the average-pooled features to directly
align feature distributions. Two different domain alignment losses are explored here. The
first is Ly (defined in Eq. (2)), which is applied to features instead of attribute attention
weights. The second is maximum mean discrepancy (MMD) [4]. From the results, we can
see that DAC surpasses all FDA variants by about 1%. This suggests that aligning attribute
attention weights is more effective than aligning feature distributions for MSDA.

D Single-Source to Single-Target Domain Adaptation

We further evaluate our DAC on popular single-source domain adaptation datasets, namely
Digits datasets. Following the setting in [15], we conduct experiments on three transfer
tasks: SVHN — MNIST, USPS — MNIST, MNIST — USPS. As in [13, 15], a three-layer
CNN is used for the first task while a two-layer CNN for the latter two tasks. We then apply
channel attention to these CNNs to facilitate DAC. Other training details are kept the same
as [13, 15]: Adam [6] optimizer with learning rate of 2e-4, mini-batch size of 128. The
results are shown in Table C. We can see that our DAC effectively improves the accuracy by
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Methods | SVHN—  USPS— MNIST— | Avg
MNIST MNIST USPS
w/DAC | 77.82 92.25 89.91 86.66
w/o DAC | 68.79 94.44 80.55 81.26
Table C: Accuracy on Digits dataset for single-source domain adaption.

Methods \ ArtPainting Cartoon Sketch Photo | Avg

DAC-Net (Single best) 86.67 78.00 68.30 97.54 | 82.63
DAC-Net (Source combined) 91.62 89.53 82.07 98.48 | 90.43
DAC-Net (MSDA) 91.39 91.39 84.97 9793 | 91.42
Oracle 99.53 99.84 99.53  99.92 | 99.71

Table D: Accuracy on PACS. Best results for each target domain (except oracle) are in bold.

5.4% over the model without DAC.

In Table D, we also compare the MSDA task with other single-source domain adaptation
tasks on PACS, including single best and source combine. Single best is the best results of
adapting each of three source domains to the target, and source combine means combining
all source domains as a single source domain. It is obvious that the our DAC-Net works
best under the setting of MSDA. This is because the transferable attributes learning of our
DAC-Net can effectively alleviate the negative transfer, and take full advantage of multiple
source domains to improve the adaptation performance.

E Influence of the Number of Source Domains

In this section, we gradually increase the number of source domains to see how it influences
the accuracy of our DAC-Net. We show the results in Table E. The findings can be sum-
marized as follows: (1) Generally, more source domains increase the performance on the
target, possibly because more source domains contribute to the learning of transferable se-
mantic attributes. (2) When the target domain is Photo, the Sketch domain brings a minor
negative impact on the performance (-0.09%;, i.e. 98.02% vs. 97.93%). This may be caused
by that the attributes learned from Sketch domain are too abstract to transfer to the concrete
attributes of Photo. Overall, our DAC-Net can benefit from more source domains.

F Influence of the Amount of Target Domain Data

To investigate how many target data are required for our DAC-Net (under MSDA setting),
we gradually reduce the amount of target domain data. From Table F, we can see that the less

Tasks Avg | Tasks Avg | Tasks Avg | Tasks Avg

C—A 87.55 A—C 78.00 C—S 68.30 C—P 94.19
C+S—A 88.67| A+S—C 90.19| C+A—>S 7888 | C+A—P 98.02
C+S+P—A 91.39 | A+S+P—C 91.39 | C+A+P—S 84.97 | C+A+S—P 97.93
Table E: Ablation study on how the number of source domains influence the accuracy of

DAC-Net on PACS. ‘C’: Cartoon, ‘A’: ArtPainting, ‘S’: Sketch, ‘P’: Photo.
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Amount of Target Data | ArtPainting Cartoon Sketch Photo| Avg

100% 91.39 91.39 8497 97.93 (91.42
70% 92.11 90.46  80.36 97.69 [90.16
50% 91.26 90.57 76.78 98.22 |89.21
30% 91.04 88.72  80.05 97.54 |89.34
10% 86.34 85.57 77.25 97.43|86.65

Table F: Accuracy of DAC-Net on PACS.

(a) DAC-Net (b) M3SDA (c) MCD

Figure B: Visualization of feature distributions of different methods on PACS using t-
SNE [10]. Each number stands for the class label of a feature (7 classes in total; better
viewed with zoom-in). Red/blue denotes the source/target domain.

target data leads to worse performance. But overall, our DAC-Net can beat the source-only
baseline even when only 10% amount of target data are used, e.g. 86.65% vs. 81.94%.

G Visualization

In this section, we provide visualizations of feature distribution to help understand why our
DAC-Net works.

Figure B depicts the feature distributions of our DAC-Net, M3SDA [12] and MCD [13].
MCD performs class-level feature distribution alignment across domains while M3SDA only
does alignment at the domain level. Figure B shows that both of them cannot achieve either
class-level or domain-level feature alignment. As a result, the target domain data of 7 classes
are not well separable. In contrast, our DAC-Net does not enforce any feature alignment,
but the source and target features are much better aligned. More importantly, the 7 classes
of all domains are easily separable using the same set of decision boundaries—after all, all
domains share the classifier. This suggests that: (1) explicitly enforcing feature alignment is
counter-productive since it even harms the discriminative feature learning for classification
task; (2) learning latent attributes by enforcing attention weight consistency is more effec-
tive for MSDA because it properly reduces the domain shift, which further contributes to
discriminative features learning on the target domain.
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