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In this supplementary material, we mainly provide more impementation details of our
TrioNet search method.

1 Implementation Details
Search Space Our search space contains four stages with 2,3,6,3 blocks in total. The
selected number of blocks is 1,2 for the first stage, 2,3 for the second, 3,4,5,6 for the third
and 1,2,3 for the last stage. The other choices are shown in Tab. 1 in the main paper.
ImageNet Following the typical weight-sharing strategy, the original ImageNet training set
is split into two subsets: 10k images for evolutionary search validation and the rest for
training the supernet [1]. We report our results on the original validation set.

In our first stage of training, we apply SGD optimizer with learning rate 0.1, Nesterov
momentum 0.9 and the weight decay 8e−5, which is only added to the largest model. Label
smoothing [10] is also adopted. We do not use dropout [9] or color jitter since this training
procedure is already strongly regularized. We train our supernet for 540 epochs, where
contains 10 warmup epochs, with batchsize 32 per gpu and 256 in total. We use γ = 0 [3] in
the final BN [5] layer for each residual block to stabilize the training procedure.

After searching, we train the searched model from scratch. We change the training
epochs to 130, and keep other hyper-parameters not changed.

For OFA [1] retraining, we apply the same training procedure on the models provided
by their codebase. We employ the provided models with MACCs 0.6B, 0.9B, 1.2B and
1.8B (FLOPs are 1.2B, 1.8B, 2.4B and 3.6B). By using our setting that image input size is
224×224 and convert the stem as conv stem [4, 8], these models FLOPs become 2.4B, 3.4B,
4.6B and 4.8B.
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Small Datasets. We modify our ImageNet recipe by training 60k iterations with weight de-
cay 1e−3, dropout 0.1, attention-dropout 0.1, and strong color jittering since the datasets are
small and easy to overfit. For each dataset, 500 of the training images are selected for evo-
lutionary search. After training the supernet and the evolutionary search, we directly sample
the weights [1, 11] from the supernet and finetune the searched model for 1k iterations with
a base learning rate 1e−3 with batchsize 128. We do not employ ImageNet [7] pretraining in
order to test the adaptation of our searching algorithm directly on the target data, instead of
testing the transfer performance of the found architecture.
Segmentation For semantic segmentation on PASCAL VOC datasets [2], we use SGD op-
timizer with learning rate 0.01, momentum 0.9 and weight decay 5e−4. Models are trained
with batchsize 16 for 20K iterations and the input image size is 512× 512. We use output
stride 32 and do not apply dilated operators in the backbone. For panoptic segmentation on
COCO datasets, we apply Adam optimizer [6] with learning rate 6.25e−5 and without weight
decay. Models are trained with batchsize 8 for 200K iterations and the input images size is
640×640.
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