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1 Implementation Details

1.1 Overall Pipeline

The overall pipeline of SABRA consists of three major components: backbone, detector,
and VRD classifier. Backbone is a feature extractor for object detection and relationship
detection. Detector predicts all potential bounding boxes and produces a set of detections:

B = {(x1,y1,%2,y2,cls,score) }, (1)

where (x1,y;) are the coordinates of the upper left corner, (x;,y,) are the coordinates of the
bottom right corner, cls is the category of this bounding box, and score is the confidence
of this prediction. VRD classifier uses this set of detections to generate all relationship
proposals S and categorize each proposal. In this way, we obtain a set of triplets associated
with a score from VRD classifier:

T = {(by1,ba,cls,score)}. 2

1.2 Backbone

To fully compare with other methods, we use several backbone setups in experiments includ-
ing VGG-16, ResNet50, ResNet50-FPN, ResNet101, and ResNet152. In particular, when we
use ResNet50-FPN for both object detection and relationship detection following [2], we use
ResNet50-FPN to denote this setting. Meanwhile, some other works like [15] use ResNet50-
FPN for object detection, but use only ResNet50 for relationship detection. Therefore, we
build up this setting named ResNet50 that a ResNet50 module is shared for both object de-
tection and relationship detection, and an extra FPN is used only for object detection. In
addition, FPN is used neither in object detection nor relationship detection process when we
use VGG-16, ResNet101, and ResNet152 as the backbone.
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Specifically, for V-COCO and HICO-DET datasets, we use ImageNet + MS COCO pre-
trained ResNet50, ResNet50-FPN, and ResNet152. For VRD dataset, we respectively use
VGG-16 pre-trained on ImageNet, ImageNet + MS COCO, and ImageNet + Visual Genome.
We also use ImageNet pre-trained ResNet101 for VRD task.

1.3 VRD C(lassifier

The overall structure of the VRD classifier is shown in Fig. 2 in the main text. In this
section, we will describe the implementation details of our VRD classifier, training strategy,
and inference procedure.

Training Strategy. VRD classifier receives the detection set B and further divides it into
two sets Bgupject and Bopject. In HOI task, Bgupject contains all human bounding boxes and
Bopject contains all bounding boxes from detector. In general VRD task, both Bgypject and
Bopject contain all detection results. Under this definition, we generate a proposal set S. For
each image, we sample 64 relationship proposals from the set S. This hyper-parameter holds
across all our model configurations, no matter whether we use BNPS. Moreover, we also
keep the ratio of positive proposals as 0.25 for all experiments. Sigmoid activation is used to
predict both the confidence of each category and the spatial mask. Correspondingly, binary
cross-entropy loss is used for both supervisions.

Inference Procedure. For each relationship proposal (b;,b;), we predict the score s.j; of
each relationship category cls. The final score of triplet (b, by, cls) is calculated as below:

score = S| X 83 X Sy, 3)

where 51 and s; are the scores of bounding box b and b, respectively.

1.4 Training Loss

During training, we jointly optimize the object detector and relationship classifier by:
L = Lipn + Liin + LR + Liewn + Lk +LVRD, @

where LSy, LIS, LeS ., LI are losses for object detection. Their definitions are the
same as [8].LSyp is a classification loss of each relation proposal. LUK is an auxiliary
loss used in our SMD model. These two losses are designed for the VRD branch. We opt
for Binary Cross Entropy loss for both items. During inference, SABRA predicts all given

relationship proposals without sampling.

2 Experimental Setup

2.1 Evaluation Metrics

We follow the convention in prior literature and used three different evaluation metrics for
these datasets.

Following [6], we use Recall@N as our evaluation metric on VRD. Recall@N computes
the recall rates using the top N predictions per image. To be consistent with prior works, we
report Recall@50 and Recall@ 100 in our experiments. We evaluate two tasks: relationship
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detection that outputs triple labels and evaluates bounding boxes of the subject and object
separately; phrase recognition that takes a triplet as a union bounding box and predicts the
triple labels. Besides, we additionally report the top-k predictions in Table 1 as [12], where
k=1 or k=70. In Table 2 in the main text, k = 1 is set by default.

For V-COCO and HICO-DET, mean average precision (mAP) is used to estimate the
performance. A triplet [human, verb, object] is considered a positive prediction if and only
if there exists a triplet [human’, verb’, object’] in the ground truth satisfying: (1) loU(human,
human’) > 0.5, (2) verb = verb’, (3) IoU(object, object’) > 0.5

In HICO-DET, we calculate the mAP among all pairs of [verb, object]. In Default mode,
we calculate AP on all images. In Known Objects mode, the category of the bounding box is
known and we only calculate AP between humans and objects from a specific category. In
V-COCO, we calculate the mAP for all categories of verbs, which is called AP,,j.

2.2 Data Pre-processing

For V-COCO, the ground truth detection is obtained from COCO. As some relationships con-
taining invisible objects, we fill the region of the object with the coordinates as the subject.
In other words, we generate a ground truth triplet (b;,b1,cls) when the object is invisible.

For HICO-DET, we generate ground truth detection from all bounding boxes of triplets.
It should be noted that, in HICO-DET, the annotation of each relationship is independent.
Therefore, there may exist multiple bounding boxes for a single person or object. To generate
a unique bounding box annotation for each instance, we merge those bounding boxes where
the IoU values are no less than 0.5.

For general VRD, we have no extra pre-processing.

2.3 Training Procedure

For V-COCO, we first train the object detection on the COCO dataset. Then we freeze the
backbone and jointly train the detector and VRD classifier on the corresponding dataset.

For HICO-DET, we first train the object detection on the COCO dataset and then finetune
on the detection results from HICO-DET. After that, we jointly train the Detector and VRD
classifier with a frozen backbone.

For general VRD, we use ImageNet pre-trained VGG-16 backbone to initialize our model
and then train object detection on the general VRD dataset. Finally, we jointly train the
detector and VRD classifier with the frozen backbone.

In each training process, we use 16 GPUs (1080TI) and train 25 epochs with the initial
learning rate being 0.00125. The learning rate is decreased in the 17th and 23rd epoch with a
0.1 decay rate. When training solely the object detection, each batch contains four different
images. For the joint training of detection and relationship detection, each batch contains
two different images.

3 Additional Analysis for BNPS

3.1 Other reasons for inaccurate detections

Although inaccurate bounding boxes lead to a large number of easy negative proposals, we
cannot simply ignore these detection results. We observe that decreasing the number of
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Relationship Detection Phrase Detection
k=1 k=70 k=1 k=70
Method Backbone R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100
VRD [6] VGG16 17.03 16.17 24.90 20.04 14.70 13.86 21.51 17.35
KL distilation [12] VGG16 19.17 21.34 22.68 31.89 23.14 24.03 26.32 29.43
Zoom-Net [11] VGG16 18.92 21.41 21.37 27.30 24.82 28.09 29.05 37.34
CAI+SCA-M [11] VGG16 19.54 22.39 22.34 28.52 25.21 28.89 29.64 38.39
Hose-Net [10] VGG16 20.46 23.57 22.13 27.36 27.04 31.71 28.89 36.16
RelDN [14] VGG16 18.92 22.96 21.52 26.38 26.37 31.42 28.24 35.44
AVR [7] VGG16 22.83 25.41 27.35 32.96 29.33 33.27 34.51 41.36
SABRA(Ours) VGG16 24.47 29.16 27.27 33.99 30.57 36.80 33.39 41.79
GPS-Net [5] VGG16 (C) 21.50 24.30 - - 28.90 34.00

MCN [13] VGG16 (C) 24.50 28.00 - - 31.80 37.10 - -
SABRA(Ours) VGG16 (C) 26.29 31.08 29.44 36.44 32.01 38.48 3545 44.07
UVTransE [3] VGGI16 (V) 25.66 29.71 27.32 34.11 30.01 36.18 31.51 39.79
SABRA(Ours) VGG16 (V) 27.87 32.48 30.71 37.71 33.56 39.62 36.62 45.29

ATR-Net [1] ResNet101 - - - - 31.96 36.54 36.06 43.45
SABRA(Ours) ResNet101 26.73 3111 29.92 37.43 32.81 38.68 36.24 45.26

Table 1: Complete results on the VRD dataset.

Detection Top-N RS BNPS

100 51.95 54.29
50 52.82 54.69
40 52.53 5443
30 53.05 54.52
20 52.92 53.68

Table 2: AP,,;, performance of the different numbers of detections from the detector on the
V-COCO test set. We use ResNet50-FPN as our backbone and modify the sampling strategy
and selection of the detector’s top-N while keeping others unchanged.

top-N detections may have a negative influence on VRD algorithms. Table 2 is a thorough
comparison of the top-N detections we keep from the detector and whether we use BNPS or
random sampling (RS) against the model performance. The results suggest that decreasing
the number of top-N has no evident improvement in the final performance (Top-50 w/o
BNPS V.S. Top-30 w/o BNPS, 52.82 V.S. 53.05). The major reason is that we still need
many inaccurate bounding boxes in inference for higher recall values. Besides, we find that
our proposed Balanced Negative Proposal Sampling has remarkable improvement no matter
which top-N we select. These results strongly prove the effectiveness and robustness of our
proposed method.

3.2 Analysis of the improvement

The improvement of BNPS comes from two major sources. Firstly, BNPS reduces the easy
negative proposals caused by inaccurate detections; secondly, BNPS balances the difficult
negative proposals, considering whether the subject and the object are involved in any triplet
from the ground truth. These two parts are both significant and essential, which is partially
proven in the ablation study. In this section, we add some extra quantitative and qualitative
results.

We include an additional experiment to test if the performance improvement of SABRA
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Figure 1: Qualitative analysis of different sampling strategies.

comes only from the increase in the number of difficult negative proposals Sﬁ;sg. We com-
pare a BNPS-3cls variant, BNPS-3cls-HN with BNPS. In the original BNPS-3cls, we use a

sample rate [0.25, 0.25, 0.25] for S 1 S§2 and $33. However, in BNPS, each class receives

neg> “neg neg*

a sample rate of 0.15, which gives a 0.45 sample rate for the negative classes Sge?; We de-
sign BNPS-3cls-HN such that it assigns the same sample rate to the hard negative classes,
[0.15, 0.15, 0.45] for S}, Sz, and Sy, We train both models on V-COCO and report the
results briefly here: BNPS-3cls-HN gives 54.20 AP,,;. while SABRA achieves 54.69. This
suggests that the improvement from BNPS-3cls to SABRA is not simply because of the in-
creased sample rate of hard negative proposals. The balance among Sﬁ% also plays a critical
role in this improvement.

We also visualize the number of negative predictions of each negative type in Fig. 1.
We observe that: (1) the total number of false positives in low-frequency difficult classes,
Sﬁ%, of SABRA is lower than BNPS-3cls because we increase the total ratio of difficult
negative proposals. (2) the reduction ratio of Sﬁeg is higher than that of Sﬁeg. Meanwhile,

is higher than that of S>3, which suggests that our balance among

the reduction ratio of S* neg>

neg
SearSeg> Sneg Clearly improves the ability to identify the negative proposals, especially on

the difficult proposals.

3.3 BNPS compared with other sampling methods

We have proved the rationality and effectiveness of our proposed BNPS in sampling ideal
relationship pairs among a vast number of proposals. To further examine the superiority of
BNPS, we implement several alternative sampling methods including online hard example
mining (OHEM) [9] and focal loss [4] and compare their capacities.

OHEM was first proposed in the object detection area and it prefers to sample harder
examples than easier ones [9]. Typically, for a mini-batch of samples, only the top-k most
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difficult proposals, i.e., proposals with top-k highest loss values, will contribute to model op-
timization. In practice, the mini-batch is constructed to enforce a 1:3 ratio between positives
and negatives, i.e., proposals in S,,s and Sy, to help ensure each mini-batch has enough
positives. Since positive proposals are usually insufficient, we only apply OHEM on S,,¢¢ to
ensure this claim. We set mini-batch size B € {48,64,96} in our experiment.

The focal loss modifies the standard cross-entropy loss to dynamically down-weight the
contribution of easy examples:

FL(p;) = —a(1—p;)"log(py),

Y ify=1 (%)
Pr=3 1—p otherwise.

In the above y € {41} specifies the ground-truth class and p € [0, 1] is the model’s esti-
mated probability for the class with label y = 1. o and 7 are the balance coefficient and the
tunable focusing parameter respectively. In our experiment, we use o = 0.25 with y € {1,2}.

Besides the above methods, Random Sampling and BNPS are also implemented as re-
lationship pair sampling methods for comparison. We train models using these methods on
V-COCO and keep all other settings consistent with setups in Section 2. Additionally, we
assign N = 50 for top-N detections.

Method Setup AP,y

RS - 52.82

B =48 45.81

OHEM B=64 45.75
B=96 45.73

Focal Loss 3:; é 2??8
BNPS - 54.69

Table 3: Performance of the different relationship pair sampling methods. We use ResNet50-
FPN as our backbone and modify the sampling strategy while keeping others unchanged.

As results shown in Table 3, we observe that BNPS achieves the best performance, which
reconfirms its superiority. Meanwhile, focal loss and OHEM in all settings behave worse
than the basic random sampling method, which draws our attention. Focal loss and OHEM
both emphasize the importance of samples with high loss values. However, in the scenario of
relationship detection, these methods may focus too much on the hard samples and overlook
the role of easy ones. Compared with them, our proposed BNPS uses the predefined sample
classification method and pay equal attention to 5 classes of negative proposals, which makes
our sampling strategy more robust towards the complicated distribution of samples in this
scenario and less likely to be influenced by outliers.
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