
HUANG ET AL.: ESAD: END-TO-END SEMI-SUPERVISED ANOMALY DETECTION 1

ESAD: End-to-end Semi-supervised Anomaly
Detection — Supplementary Material

Chaoqin Huang12

huangchaoqin@sjtu.edu.cn

Fei Ye1

yf3310@sjtu.edu.cn

Peisen Zhao13

pszhao@sjtu.edu.cn

Ya Zhang B12

ya_zhang@sjtu.edu.cn

Yanfeng Wang12

wangyanfeng@sjtu.edu.cn

Qi Tian3

tian.qi1@huawei.com

1 Cooperative Medianet Innovation
Center,
Shanghai Jiao Tong University

2 Shanghai AI Laboratory
3 Huawei Cloud & AI

1 Supplementary Proofs
Proposition 1 If KL [pN(X ,Z)||pA(X ,Z)] is maximized, then it is equivalent that
KL [pN(X)||pA(X)] and KL [pN(Z|X)||pA(Z|X)] are maximized.

Proof 1 The KL divergence for the joint distributions can be decomposed with the chain
rule [5]:

KL [pN(X ,Z)||pA(X ,Z)]

=EpN(X ,Z)

[
log

pN(X ,Z)
pA(X ,Z)

]
=EpN(X ,Z)

[
log

pN(X)

pA(X)
+ log

pN(Z|X)

pA(Z|X)

]
=KL [pN(X)||pA(X)]+EpN(X) [KL [pN(Z|X)||pA(Z|X)]] .

To maximize the KL divergence for the joint distributions, it is equivalent that we maximize
the KL divergence for both marginal and conditional distributions [8].

Proposition 2 Let I(XN ,ZN) denotes the mutual information between XN and ZN; H(ZN) de-
notes the entropy of ZN; H(pN(Z|X), pA(Z|X)) denotes the cross-entropy between pN(Z|X)
and pA(Z|X); KL [pN(X) || pA(X)] denotes the KL divergence between pN(X) and pA(X).
Then:

KL [pN(X ,Z)||pA(X ,Z)]

= I(XN ,ZN)−H(ZN)+EpN(X) [H(pN(Z|X), pA(Z|X))]+KL [pN(X)||pA(X)] .
(1)
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Proof 2 The KL divergence can be reformulated as:

KL [pN(X ,Z)||pA(X ,Z)]

= EpN(X ,Z)

[
log

pN(X ,Z)
pA(X ,Z)

]
= EpN(X ,Z)

[
log

pN(Z|X) · pN(X)

pA(Z|X) · pA(X)

]
= EpN(X ,Z)

[
log

pN(Z|X) · pN(X) · pN(Z)
pA(Z|X) · pA(X) · pN(Z)

]
= EpN(X ,Z)

[
log
(

pN(Z|X)

pN(Z)
· pN(Z) ·

1
pA(Z|X)

· pN(X)

pA(X)

)]
.

The above formula is decomposed into four components. The first term refers to the mutual
information between the original data XN and its latent representation ZN:

EpN(X ,Z)

[
log

pN(Z|X)

pN(Z)

]
=EpN(X ,Z)

[
log

pN(Z|X) · pN(X)

pN(X) · pN(Z)

]
=EpN(X ,Z)

[
log

pN(X ,Z)
pN(X) · pN(Z)

]
=I (XN ,ZN) .

The second term refers to the negative entropy of ZN:

EpN(X ,Z) [log pN(Z)] =−EpN(Z)

[
log

1
pN(Z)

]
=−H(ZN).

The third term refers to the expected value of the cross entropy between the conditional
distributions pA(Z|X) and pN(Z|X):

EpN(X ,Z)

[
log

1
pA(Z|X)

]
=EpN(X)EpN(Z|X) [− log pA(Z|X)]

=EpN(X) [H(pN(Z|X), pA(Z|X))] .

The fourth term is a constant, since pN(X) and pA(X) are fixed when the dataset is given:

EpN(X ,Z)

[
log

pN(X)

pA(X)

]
= KL [pN(X)||pA(X)] = C.

Thus the KL divergence can be reformulated as:

KL [pN(X ,Z)||pA(X ,Z)]

= I(XN ,ZN)−H(ZN)+EpN(X) [H(pN(Z|X), pA(Z|X))]+KL [pN(X)||pA(X)] .

Proposition 3 The third term in the objective Eq. (1), i.e., EpN(X) [H(pN(Z|X), pA(Z|X)], is
non-negative.
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Proof 3 We assume that pN(Z|X) and pA(Z|X) are separable at the latent space, i.e., for
X ,Z ∼ pN(X ,Z), the evaluated density log pA(Z|X) 6 0. This assumption is indeed consist
with the fundamental assumption in [4]: data can be embedded into a certain representation
space where normal instances and anomalies appear significantly different. With the above
assumption, EpN(X) [H(pN(Z|X), pA(Z|X)] is shown to be non-negative:

infEpN(X) [H(pN(Z|X), pA(Z|X)]

= infEpN(X ,Z)[− log pA(Z|X)]

>EpN(X ,Z)[inf(− log pA(Z|X))]

>0.

Proposition 4 Assuming Z follows an isotropic Gaussian, with mean µ , covariance Σ and
Z ⊆ Rd , the entropy of Z, i.e., H(Z), is proportional to its log-variance for a fixed dimen-
sionality d, without dependence on its mean µ .

Proof 4 For Z with covariance Σ and Z ⊆ Rd ,

H(Z) = E[− log p(Z)] =−
∫

Z
p(Z) log p(Z)dZ ≤ 1

2
log((2πe)d detΣ),

which holds with equality iff Z is jointly Gaussian [6]. Assuming Z follows an isotropic
Gaussian, Z ∼ N(µ,σ2I) with σ > 0, we get,

H(Z) =
1
2

log((2πe)d detσ
2I) =

d
2
(1+ log(2πσ

2)) ∝ logσ
2,

which shows that the entropy of Z is proportional to its log-variance for a fixed dimension-
ality d. The above proof has no dependence on the mean µ .

2 Analysis of Deep SAD
Deep SAD builds upon Infomax principle, which maximizes the mutual information I(X ,Z)
between data and latent representations with regularization on the representations. The ob-
jective function for Deep SAD is formulated as:

max
θ

I(X ,Z)+β (H(ZA)−H(ZN)), (2)

where regularization is enforced through entropy. For ∀x ∈ X , Deep SAD adopts an autoen-
coder consisting of an encoder Enc(·) and a decoder Dec(·): z = Enc(x), x̂ = Dec(z), where
x̂ is the reconstructed sample and z is the corresponding latent representation, and takes the
following two-step process to implement the above objective function.
(i) Autoencoder Pre-training: To maximize the mutual information between the data and
the latent representations, a reconstruction loss is adopted to pre-train the autoencoder:

Lrec =
1

n+m

n+m

∑
i=1
‖x̂i−xi‖2, (3)

where x1, · · · ,xn+m ∈ X .
(ii) Encoder Fine-turning: To further regularize the entropy of the latent representations,
the encoder is fine-turned with an SVDD loss,

LSV DD =
1
n

n

∑
i=1
‖zu

i − c‖2 +
η

m

m

∑
j=1
‖zl

j− c‖y j
2 , (4)
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where zu
1, · · · ,zu

n ∈Z are the corresponding latent representations of unlabeled samples xu
1, · · · ,xu

n,
zl

1, · · · ,zl
m ∈ Z are the corresponding latent representations of labeled samples xl

1, · · · ,xl
m,

and η is set as 1. The hypersphere center c is set as the mean of the outputs obtained from a
forward pass of the encoder for all the data. In fact, Deep SAD does not use the coefficient
β in Eq. (2), because the two terms are separately optimized in two stages.

We now argue that the reason for the two-stage implementation of Deep SAD is the con-
tradiction between the optimization of mutual information and entropy. For example, when
the latent representations have extremely low entropy, especially zero in the extreme case,
the model can be considered as mapping all data into a constant in which the mutual infor-
mation is restricted to zero, which contradicts with the mutual information maximization.
The two-stage implementation for Deep SAD avoids directly facing the above contradiction.

Table 1: Model Structure of ESAD.
Layer Input Output

3×3×64 x (3×H×W ) x0−1 (64×H×W )
3×3×64 x0−1 x0−2 (64×H×W )
MaxPool x0−2 x1−1 (64×1/2H×1/2W )

3×3×128 x1−1 x1−2 (128×1/2H×1/2W )
3×3×128 x1−2 x1−3 (128×1/2H×1/2W )
MaxPool x1−3 x2−1 (128×1/4H×1/4W )

3×3×256 x2−1 x2−2 (256×1/4H×1/4W )
3×3×256 x2−2 x2−3 (256×1/4H×1/4W )
MaxPool x2−3 x3−1 (256×1/8H×1/8W )

3×3×512 x3−1 x3−2 (256×1/8H×1/8W )
3×3×512 x3−2 x3−3 (256×1/8H×1/8W )
MaxPool x3−3 x4−1 (256×1/8H×1/16W )

3×3×512 x4−1 x4−2 (512×1/16H×1/16W )
3×3×512 x4−2 z (512×1/16H×1/16W )

UpSample z up3−1 (512×1/8H×1/8W )
3×3×256 up3−1 up3−2 (256×1/8H×1/8W )
3×3×256 up3−2 up3−3 (256×1/8H×1/8W )
UpSample up3−3 up2−1 (256×1/4H×1/4W )
3×3×128 up2−1 up2−2 (128×1/4H×1/4W )
3×3×128 up2−2 up2−3 (128×1/4H×1/4W )
UpSample up2−3 up1−1 (128×1/2H×1/2W )
3×3×64 up1−1 up1−2 (64×1/2H×1/2W )
3×3×64 up1−2 up1−3 (64×1/2H×1/2W )
UpSample up1−3 up0−1 (64×H×W )
3×3×64 up0−1 up0−2 (64×H×W )
3×3×64 up0−2 up0−3 (64×H×W )
3×3×3 up0−3 x̂ (3×H×W )

3×3×64 x̂ x5−1 (64×H×W )
3×3×64 x5−1 x5−2 (64×H×W )
MaxPool x5−2 x6−1 (64×1/2H×1/2W )

3×3×128 x6−1 x6−2 (128×1/2H×1/2W )
3×3×128 x6−2 x6−3 (128×1/2H×1/2W )
MaxPool x6−3 x7−1 (128×1/4H×1/4W )

3×3×256 x7−1 x7−2 (256×1/4H×1/4W )
3×3×256 x7−2 x7−3 (256×1/4H×1/4W )
MaxPool x7−3 x8−1 (256×1/8H×1/8W )

3×3×512 x8−1 x8−2 (256×1/8H×1/8W )
3×3×512 x8−2 x8−3 (256×1/8H×1/8W )
MaxPool x8−3 x9−1 (256×1/8H×1/16W )

3×3×512 x9−1 x9−2 (512×1/16H×1/16W )
3×3×512 x9−2 ẑ (512×1/16H×1/16W )

3 Model Architecture and Training Details
The model architecture for ESAD is shown in Table 1. For the training, we use stochastic
gradient descent (SGD) [3] optimizer with default hyperparameters in Pytorch. ESAD is
trained using a batch size of 32 for 200 epochs with NVIDIA GTX 2080Ti. The learning
rate is initially set as 0.1, and is divided by 2 every 50 epoch.
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Table 2: Classic anomaly detection benchmarks [18].
Dataset Numbers Dimensions #outliers (%)

arrhythmia 452 274 66 (14.6%)
cardio 1,831 21 176 (9.6%)

satellite 6,435 36 2,036 (31.6%)
satimage-2 5,803 36 71 (1.2%)

shuttle 49,097 9 3,511 (7.2%)
thyroid 3,772 6 93 (2.5%)

4 Datasets
Natural Image Datasets. MNIST [14], a dataset consists of 70,000 28× 28 handwritten
grayscale digit images; Fashion-MNIST [29], a relatively new dataset comprising 28× 28
grayscale images of 70,000 fashion products from 10 categories, with 7,000 images per
category; CIFAR-10 [13], a dataset consists of 60,000 32× 32 RGB images of 10 classes,
with 6,000 images for per class.
Medical Image Datasets. Following [24, 26], we examine the detection of metastases in
H&E stained images of lymph nodes in Camelyon16 [2] and the recognition of fourteen
diseases on the chest X-rays in the NIH dataset [28].

For the NIH dataset, images without any disease marker were considered normal. Pul-
monary and cardiac abnormalities in this dataset include atelectasis, effusion, infiltration,
mass, nodule, pneumonia, pneumothorax, consolidation, edema, emphysema, fibrosis, pleu-
ral thickening, hernia and cardiomegaly, which are all considered anomalous. Following [24,
26], we split the dataset into two sub-datasets having only posteroanterior (PA) or anteropos-
terior (AP) projections. Note that in the training set, the ratios of labeled anomalous samples
are 3.9% for AP and 3.3% for PA. We also experiment on a subset containing clearer nor-
mal/anomalous cases [24]. This subset consists of 5110 normal and 857 anomalous images
for training, and 677 normal and 677 anomalous images for testing.

For the Camelyon16 dataset, we sample the Vahadane-normalized [27] 64×64 tiles from
the fully normal slides with magnification of 10×, and treat these as normal. Tiles with
metastases are treated as anomalous. It contains 7612 normal and 200 anomalous training
images, and 4000 (normal) + 817 (anomalous) images for the test.
Classic anomaly detection benchmark datasets. We use six non-image classic anomaly
detection benchmark datasets [18]. Following [20], for the evaluation, we consider random
train-to-test set splits of 60:40 while maintaining the original proportion of anomalies in each
set. The supplementary details of the classic anomaly detection benchmarks [18] are shown
in Table 2.

5 Competing Methods
We consider several shallow unsupervised methods, deep unsupervised anomaly detection
competitors and semi-supervised anomaly detection approaches as baselines. Complete de-
tails are shown as follows:
(1) OC-SVM/SVDD [23, 25]: The OC-SVM and SVDD are equivalent for the Gaussian/RBF
kernel. OC-SVM/SVDD here have unfair advantages by selecting their hyperparameters to
maximize AUC on a subset (10%) of the test set to establish a strong baseline. The RBF scale
parameters γ ∈

{
2−7,2−6, . . .22

}
are considered and the best performing one is selected.
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Table 3: Average area under the ROC curve (AUC) in % on natural image datasets, com-
paring with unsupervised anomaly detection methods. “†” denotes the highest test AUC
among multiple running for the strong baselines. “∗” denotes the highest test AUC among
all training epochs for the stronger baselines. We report the results of unsupervised ESAD,
where we ignore the labeled data in the training set. Emphasizing that ESAD focuses on the
semi-supervised setting but not the unsupervised setting.

Method MNIST F-MNIST CIFAR-10

CAE [16] 92.9 ± 5.7 90.2 ± 5.8 56.2 ± 13.2
IF Hybrid [15] 90.5 ± 5.3 82.5 ± 8.1 59.9 ± 6.7

Deep SVDD [19] 92.8 ± 4.9 89.2 ± 6.2 60.9 ± 9.4
AnoGAN† [22] 93.7 - 61.2
ALOCC∗ [21] 93.3 - 62.2
ADGAN∗ [7] 94.7 88.4 62.4

OC-SVM Hybrid [23] 96.3 ± 2.5 91.2 ± 4.7 63.8 ± 9.0
OCGAN† [17] 97.5 - 65.6

GANomaly∗ [1] 92.8 80.9 69.5
P-KDGAN† [30] 97.8 - 73.8

DGEO† [10] 98.0 93.5 86.0

ESAD (unsupervised) 98.5 ± 1.3 94.0 ± 4.5 78.8 ± 6.5
ESAD 99.6 ± 0.3 95.9 ± 4.0 88.5 ± 6.9

Then the best final results are reported over ν-parameter, where ν ∈ {0.01,0.05,0.1,0.2,0.5}.
(2) Isolation Forest [15]: The number of trees is set as t = 100 and the sub-sampling size is
set as ψ = 256 as recommended in the original work.
(3) SSAD [11]: SSAD also have the unfair advantages the same as OC-SVM/SVDD. The
scale parameters γ of the RBF kernel are selected from γ ∈

{
2−7,2−6, . . .22

}
and then re-

port the best performing one. Otherwise we set the hyperparameters as recommend by the
original authors to κ = 1,κ = 1,ηu = 1, and ηl = 1 [11].
(4) Convolutional Autoencoder (CAE) [16]: The autoencoders are trained on the MSE
reconstruction loss that also serves as the anomaly score.
(5) Deep SVDD [19]: Both variants, Soft-Boundary Deep SVDD and One-Class Deep
SVDD are considered as unsupervised baselines and always report the better performance as
the unsupervised result. For Soft-Boundary Deep SVDD, The radius R on every mini-batch
is optimally solved. For Deep SVDD, all the bias terms from a network are removed to
prevent a hypersphere collapse as recommended by the authors in the original work [19].
(6) SS-DGM [12]: We consider both the M2 and M1+M2 model and always report the
better performing result. Other settings are following the original work [12].
(7) Deep SAD [20]: The results are borrow from [20]. We set λ = 10−6 and equally weight
the unlabeled and labeled examples by setting η = 1 if not reported otherwise.

To establish hybrid methods, we apply the OC-SVM, IF, and SSAD to the resulting
bottleneck representations given by the respective converged autoencoders. To complete the
full learning spectrum, we also include a fully supervised deep classifier trained on the binary
cross-entropy loss.

6 Supplementary Experimental Results
Besides the experiments in the main paper, we examine three scenarios [20] in which we
vary the following three experimental parameters: (i) γl , the ratio of labeled samples in the
training data; (ii) γp, the ratio of pollution, i.e., unknown anomalies, in the unlabeled training
data, and (iii) the number of anomaly classes kl included in the labeled training data.
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Table 4: Complete results of experimental scenario (ii), where we pollute the unlabeled
part of the training set with (unknown) anomalies. We report the avg. AUC in % with st.
dev. computed over 90 experiments at various ratios γp.

Data γp
OC-SVM

Hybrid [23]
IF

Hybrid [15]
CAE
[16]

Deep
SVDD [19]

SSAD
Hybrid [11]

SS-DGM
[12]

Deep
SAD [20]

TLSAD
[9]

ESAD
(ours)

Supervised
Classifier

.00 96.3 ± 2.5 90.5 ± 5.3 92.9 ± 5.7 92.8 ± 4.9 97.4 ± 2.0 92.2 ± 5.6 96.7 ± 2.4 96.9 99.4 ± 0.3 94.5 ± 4.6

.01 95.6 ± 2.5 90.6 ± 5.0 91.3 ± 6.1 92.1 ± 5.1 95.2 ± 2.3 92.0 ± 6.0 95.5 ± 3.3 94.5 99.2 ± 0.6 91.5 ± 5.9
MNIST .05 93.8 ± 3.9 89.7 ± 6.0 87.2 ± 7.1 89.4 ± 5.8 89.5 ± 3.9 91.0 ± 6.9 93.5 ± 4.1 94.0 98.5 ± 1.0 86.7 ± 7.4

.10 91.4 ± 5.1 88.2 ± 6.5 83.7 ± 8.4 86.5 ± 6.8 86.0 ± 4.6 89.7 ± 7.5 91.2 ± 4.9 93.5 97.8 ± 1.3 83.6 ± 8.2

.20 85.9 ± 7.6 85.3 ± 7.9 78.6 ± 10.3 81.5 ± 8.4 82.1 ± 5.4 87.4 ± 8.6 86.6 ± 6.6 88.6 96.7 ± 2.0 79.7 ± 9.4

.00 91.2 ± 4.7 82.5 ± 8.1 90.2 ± 5.8 89.2 ± 6.2 90.5 ± 5.9 71.4 ± 12.7 90.5 ± 6.5 91.4 95.6 ± 4.1 76.8 ± 13.2

.01 91.5 ± 4.6 84.9 ± 7.2 87.1 ± 7.3 86.3 ± 6.3 87.8 ± 6.1 71.2 ± 14.3 87.2 ± 7.1 92.3 95.5 ± 4.1 67.3 ± 8.1
F-MNIST .05 90.7 ± 4.9 85.5 ± 7.2 81.6 ± 9.6 80.6 ± 7.1 82.7 ± 7.8 71.9 ± 14.3 81.5 ± 8.5 89.8 94.5 ± 4.5 59.8 ± 4.6

.10 89.3 ± 6.2 85.5 ± 7.7 77.4 ± 11.1 76.2 ± 7.3 79.8 ± 9.0 72.5 ± 15.5 78.2 ± 9.1 90.2 93.6 ± 4.7 56.7 ± 4.1

.20 88.1 ± 6.9 86.3 ± 7.4 72.5 ± 12.6 69.3 ± 6.3 74.3 ± 10.6 70.8 ± 16.0 74.8 ± 9.4 88.4 92.5 ± 4.9 53.9 ± 2.9

.00 63.8 ± 9.0 59.9 ± 6.7 56.2 ± 13.2 60.9 ± 9.4 73.3 ± 8.4 50.8 ± 4.7 77.9 ± 7.2 80.0 86.9 ± 6.8 63.5 ± 8.0

.01 63.8 ± 9.3 59.9 ± 6.7 56.2 ± 13.1 60.5 ± 9.4 72.8 ± 8.1 51.1 ± 4.7 76.5 ± 7.2 76.4 86.5 ± 6.9 62.9 ± 7.3
CIFAR-10 .05 62.6 ± 9.2 59.6 ± 6.4 55.7 ± 13.3 59.6 ± 9.8 71.0 ± 8.4 50.1 ± 2.9 74.0 ± 6.9 75.9 84.3 ± 7.4 62.2 ± 8.2

.10 62.9 ± 8.2 59.1 ± 6.6 55.4 ± 13.3 58.6 ± 10.0 69.3 ± 8.5 50.5 ± 3.6 71.8 ± 7.0 72.6 81.9 ± 7.7 60.6 ± 8.3

.20 61.9 ± 8.1 58.3 ± 6.2 54.6 ± 13.3 57.0 ± 10.6 67.9 ± 8.1 50.1 ± 1.7 68.5 ± 7.1 71.4 79.8 ± 8.8 58.5 ± 6.7

Table 5: Complete results of experimental scenario (iii), where we increase the number
of anomaly classes kl included in the labeled training data. We report the avg. AUC in %
with st. dev. computed over 100 experiments at various numbers kl . Note that unsupervised
methods [15, 16, 19, 23] cannot be applied to the semi-supervised setting when kl 6= 0, while
SS-DGM [12] and the supervised classifier are not compatible for the unsupervised setting
when kl = 0.

Data kl
OC-SVM

Hybrid [23]
IF

Hybrid [15]
CAE
[16]

Deep
SVDD [19]

SSAD
Hybrid [11]

SS-DGM
[12]

Deep
SAD [20]

ESAD
(ours)

Supervised
Classifier

0 91.4 ± 5.1 88.2 ± 6.5 83.7 ± 8.4 86.5 ± 6.8 91.4 ± 5.1 86.5 ± 6.8 92.7 ± 3.8
1 86.0 ± 4.6 89.7 ± 7.5 91.2 ± 4.9 97.8 ± 1.3 83.6 ± 8.2

MNIST 2 87.7 ± 3.8 92.8 ± 5.3 92.0 ± 3.6 98.2 ± 0.9 90.3 ± 4.6
3 89.8 ± 3.3 94.9 ± 4.2 94.7 ± 2.8 99.1 ± 0.6 93.9 ± 2.8
5 91.9 ± 3.0 96.7 ± 2.3 97.3 ± 1.8 99.3 ± 0.5 96.9 ± 1.7

0 89.3 ± 6.2 85.5 ± 7.7 77.4 ± 11.1 76.2 ± 7.3 89.3 ± 6.2 76.2 ± 7.3 91.2 ± 5.4
1 79.8 ± 9.0 72.5 ± 15.5 78.2 ± 9.1 93.6 ± 4.7 56.7 ± 4.1

F-MNIST 2 80.1 ± 10.5 74.3 ± 15.4 80.5 ± 8.2 94.7 ± 4.6 62.3 ± 2.9
3 83.8 ± 9.4 77.5 ± 14.7 83.9 ± 7.4 95.8 ± 4.8 67.3 ± 3.0
5 86.8 ± 7.7 79.9 ± 13.8 87.3 ± 6.4 96.7 ± 4.3 75.3 ± 2.7

0 62.9 ± 8.2 59.1 ± 6.6 55.4 ± 13.3 86.6 ± 10.0 62.9 ± 8.2 58.6 ± 10.0 73.5 ± 6.8
1 69.3 ± 8.5 50.5 ± 3.6 71.8 ± 7.0 81.9 ± 7.7 60.6 ± 8.3

CIFAR-10 2 72.3 ± 7.5 50.3 ± 2.4 75.2 ± 6.4 83.8 ± 6.0 61.0 ± 6.6
3 73.3 ± 7.0 50.0 ± 0.7 77.5 ± 5.9 84.9 ± 8.1 62.7 ± 6.8
5 74.2 ± 6.5 50.0 ± 1.0 80.4 ± 4.6 86.7 ± 7.0 60.9 ± 4.6

Besides the baselines considering in the main paper, we further consider several shallow
unsupervised methods and deep unsupervised anomaly detection competitors as baselines.
For the shallow unsupervised methods, OC-SVM [23] and Isolation Forest [15] are con-
sidered. For the deep unsupervised anomaly detection competitors, we consider CAE [16],
Deep SVDD [19] AnoGAN [22], ALOCC [21], ADGAN [7], OCGAN [17], GANomaly
[1], P-KDGAN [30] and DGEO [10]. OC-SVM here have unfair advantages by selecting
their hyperparameters to maximize AUC on a subset (10%) of the test set to establish strong
baselines.
Experimental Scenario (i). For the experimental scenario (i), where the effectiveness of
adding labeled anomalies during training is investigated, i.e., increasing γl , has been shown in
the main paper. In this part, we further report the results comparing with several unsupervised
methods under the unsupervised setting in Table 3. We emphasize that our ESAD is not
designed for the unsupervised setting. In these experiments, the semi-supervised terms are
not working and make ESAD incomplete, since it remains only the unsupervised terms.
Thus, these results are somewhat unfair for ESAD. Note that this paper still focus on the
semi-supervised setting but not the unsupervised setting.

Citation
Citation
{Sch{ö}lkopf, Platt, Shawe-Taylor, Smola, and Williamson} 2001

Citation
Citation
{Liu, Ting, and Zhou} 2008

Citation
Citation
{Masci, Meier, Cire{³}an, and Schmidhuber} 2011

Citation
Citation
{Ruff, Vandermeulen, Goernitz, Deecke, Siddiqui, Binder, M{ü}ller, and Kloft} 2018

Citation
Citation
{G{ö}rnitz, Kloft, Rieck, and Brefeld} 2013

Citation
Citation
{Kingma, Mohamed, Rezende, and Welling} 2014

Citation
Citation
{Ruff, Vandermeulen, G{ö}rnitz, Binder, M{ü}ller, M{ü}ller, and Kloft} 2020

Citation
Citation
{Feng, Tang, Dou, and Wu} 2021

Citation
Citation
{Liu, Ting, and Zhou} 2008

Citation
Citation
{Masci, Meier, Cire{³}an, and Schmidhuber} 2011

Citation
Citation
{Ruff, Vandermeulen, Goernitz, Deecke, Siddiqui, Binder, M{ü}ller, and Kloft} 2018

Citation
Citation
{Sch{ö}lkopf, Platt, Shawe-Taylor, Smola, and Williamson} 2001

Citation
Citation
{Kingma, Mohamed, Rezende, and Welling} 2014

Citation
Citation
{Sch{ö}lkopf, Platt, Shawe-Taylor, Smola, and Williamson} 2001

Citation
Citation
{Liu, Ting, and Zhou} 2008

Citation
Citation
{Masci, Meier, Cire{³}an, and Schmidhuber} 2011

Citation
Citation
{Ruff, Vandermeulen, Goernitz, Deecke, Siddiqui, Binder, M{ü}ller, and Kloft} 2018

Citation
Citation
{G{ö}rnitz, Kloft, Rieck, and Brefeld} 2013

Citation
Citation
{Kingma, Mohamed, Rezende, and Welling} 2014

Citation
Citation
{Ruff, Vandermeulen, G{ö}rnitz, Binder, M{ü}ller, M{ü}ller, and Kloft} 2020

Citation
Citation
{Sch{ö}lkopf, Platt, Shawe-Taylor, Smola, and Williamson} 2001

Citation
Citation
{Liu, Ting, and Zhou} 2008

Citation
Citation
{Masci, Meier, Cire{³}an, and Schmidhuber} 2011

Citation
Citation
{Ruff, Vandermeulen, Goernitz, Deecke, Siddiqui, Binder, M{ü}ller, and Kloft} 2018

Citation
Citation
{Schlegl, Seeb{ö}ck, Waldstein, Schmidt-Erfurth, and Langs} 2017

Citation
Citation
{Sabokrou, Khalooei, Fathy, and Adeli} 2018

Citation
Citation
{Deecke, Vandermeulen, Ruff, Mandt, and Kloft} 2018

Citation
Citation
{Perera, Nallapati, and Xiang} 2019

Citation
Citation
{Ak{ç}ay, Atapour-Abarghouei, and Breckon} 2019

Citation
Citation
{Zhang, Chen, and Sun} 2020

Citation
Citation
{Golan and El-Yaniv} 2018



8 HUANG ET AL.: ESAD: END-TO-END SEMI-SUPERVISED ANOMALY DETECTION
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(a) Normal Samples (b) Anomalous Samples

Figure 1: Examples of normal (left) and anomalous (right) samples of H&E-stained lymph
node of Camelyon16 challenge [2] (top) and chest X-rays of NIH dataset [28] (bottom). We
show the predicted anomaly score by the proposed method. The higher the score, the more
likely to be an anomaly. Best viewed in color.
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Figure 2: ESAD sensitivity analysis w.r.t. λ1 on MNIST. We report avg. AUC with st. dev.
over 90 experiments for various values of hyperparameter λ2. Best viewed in color.

Experimental Scenario (ii). For the experimental scenario (ii), where the robustness is
investigated in this scenario through adding polluted data. With an increasing pollution
ratio γp, we pollute the unlabeled training set with anomalies drawn from all nine anomaly
classes. We fix γl = 0.05 in this scenario. We report the average results over 90 experiments
per pollution ratio γp. The corresponding results are shown in Table 4. Results show that
ESAD is least affected by the pollution data and show the best robustness in all the polluted
levels.
Experimental Scenario (iii). For the experimental scenario (iii), we increase the number of
anomaly classes kl included in the labeled part of the training set to increase the diversity
of labeled anomalous data. As shown in Table 5, ESAD shows better performance in this
scenario. For example, the AUC of ESAD on CIFAR-10 increases from 81.9% to 86.7%
(γl = 0.05, γp = 0.1) when we change kl from 1 to 5.
Examples Visualization. We illustrate the predictions of our model in Figure 1. Samples
are randomly chosen from H&E-stained lymph node of Camelyon16 challenge [2] (top) and
chest X-rays of NIH dataset [28] (bottom). These samples and their corresponding scores
show that the higher the score, the more likely to be an anomaly.
Sensitivity Analysis on λ2. We analyze the sensitivity of ESAD over the hyperparameters
λ2. Figure 2 shows the performance with different λ2 using ESAD on MNIST. We set γl =
0.05, γp = 0.1, kl = 1 in this experiment. Results show that without the assistant loss, i.e.,
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λ2 = 0, ESAD shows relatively low and unstable AUCs. ESAD shows best performance
when λ2 = 1. When λ2 is too large, ESAD also shows unstable performance. This is because
both two encoders will converge into the same constant function if the impact of the assistant
loss is much greater than the other two mutual information and entropy based loss functions.
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