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A HumanSloMo Dataset

A.1 Dataset

In this section, we provide more details about the dataset of videos of human activities Hu-
manSloMo. We collect high-quality, high frame-rate videos from YouTube and also adopt
the standard frame-rate videos provided in [2]. In total, the dataset contains 5 different ac-
tivity categories with 80 action clips performed by 10 subjects in total. Table A summarizes
the videos of 5 categories alongside other dataset properties. Examples of video thumbnails
can be found at Fig. J. We downsample the video frames to 15 FPS for test, from which high
FPS sequences are to be recovered.

Category Resolution (a) (b) (c)
Dance [2] 1024x512 10 878 82

Body Training 1920x1080 15 798 78
Boxing 1920x1080 15 1394 121

Basketball 1920x1080 13 368 35
Martial Arts 1920x1080 27 1054 142

Table A: Details about HumanSlomo dataset. Note that (a) is the number of clips for the
video category, (b) denotes the number of low FPS frames for training, (c) lists the numbers
of triplets (3-frame sequences) used for evaluation.
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A.2 Evaluation Metrics

Following the protocol in [3, 15], each sample is defined as a test triplet (3-frame sequences).
We report the following metrics: PSNR, SSIM [14], LPIPS [16], FVD [11].

• PSNR measures the ratio between the maximum possible power of a signal and the
power of corrupting noise, indicating the per-pixel color difference.

• LPIPS [16] measures the difference between the feature maps extracted from the gen-
eration and the ground truth using a trained CNN.

• SSIM [14] measures the structural similarity between the generated image and the
ground truth, considering the local neighbouring region of each pixel.

• FVD [11] measures the overall visual quality and temporal coherence of the whole
generated sequence in addition to the pixel’s own color, based on Fréchet Inception
Distance [4].

Since the human part in the image is of greater interest to us, we follow the techniques in [7]
to generate ground-truth human foreground mask Mt using image dilation from the input
skeleton image. The metrics are denoted by mask PSNR/LPIPS/SSIM.

For the distributional metric, we follow the evaluation protocol in [11] by sampling the
generated and ground-truth 21-frame sequences with a batch size of 32. We compute FVD
between generated and ground-truth data in total 30 runs. The averaged value of 30 runs is
reported.

B Implementation Details

B.1 Human Motion Modeling

Network backbone. Motivated by recent successes in other generative tasks [12], we
adopt the transformer architecture in [1] as the backbone of both networks Tdenoise and Tinterp
for human motion modelling. An attention layer converts input features into three representa-
tions: query, key, and value. If the query and the key are highly correlated (with higher value
from dot-product), its value is considered relevant to the query correspondingly. Hence, the
final results are yielded from multiplying the softmax of attention weights and values. To
achieve human motion modelling in our denoising network and interpolation network, we
uniquely employ attention masks to control where and when to attend the necessary poses
across time steps.

The detailed architecture of both motion denoising network and motion interpolation
network is illustrated in Fig. A. For both networks, we use N = 6 attention blocks. We set
the number of heads in the attention layer to be M = 8, the dropout probability to be 0.1 and
use leaky ReLU as the activation function.

Simulation of 2D motion from AMASS. Training our networks requires large-scale real-
istic 2D human motion sequences, which are scarce due to the known difficulty of annotating
sequential data. Therefore, we propose to simulate the required training data via the AMASS
MoCap dataset [8]. This dataset contains high FPS sequences of realistic human poses and
shapes parameterized by the SMPL [6] model. For each high FPS motion sample, we first
generate its 3D body joints from the pose and shape parameters and project these joints onto
the image plane using a perspective camera, where the intrinsics and extrinsics are sampled
within a expected value range that fits the image coordinate, obtaining a sequence of 2D
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Figure A: Detailed Network architecture of the human motion modeling network. We
implement our network based on the transformer in [1] using PyTorch. For both networks,
we use N = 6 attention blocks. We set the number of heads in the attention layer to be M = 8,
the dropout probability to be 0.1 and use leaky ReLU as activation function.

joints Phigh. This ground truth motion Phigh is downsampled to generate its low FPS coun-
terpart Plow for training. To further simulate detection noise and missing joints, we perturb
some keypoints with random noise and randomly drop-out joints to attain the training sample
P̄low.

Hyperparameters. We use 13437 motion sequences from the AMASS dataset for training
and 504 sequences for validation. When generating 2D joints, we randomly apply perturba-
tion, joints dropping and flipping to 15% ∼ 25% joints to simulate the noises and errors in
actual pose detections. We train our network using Adam optimizer with an initial learning
rate of 10−4, a batch size of 32, and first- and second-momentum of 0.5 and 0.99 respec-
tively. The learning rate is decayed with a scale of 0.5 for every 100 epochs. We set the
weight of the interpolation loss λinterp = 2. The training takes one day on a RTX 2080Ti for
300 epochs.

B.2 Human Image Generation Network
Network architecture. Fig. B depicts the detailed architecture of our neural rendering
model. Our model is adapted from [10] which consists an encoder-decoder based network Gs
with SPADE residual blocks (Fig. C) and a conditional feature encoder Ec. The conditional
features are extracted and fed into the SPADE residual blocks for providing pose-aware
appearance information. The SPADE residual network would try to recover human images
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Figure B: Network architecture of our human image generation network. Our model
is modified from [10] which consists an encoder-decoder based network Gs with SPADE
residual blocks (Fig. C) and a conditional feature encoder Ec. An additional mask generator
Gm learns to composite the generated foreground image with the input background image.
Finally, a PatchGAN [5] based image discriminator is deployed to ensure the generator pro-
duce perceptually realistic images.

according to the input poses with the assistance of conditional features. To further take
the background dynamics and consistency into consideration, a mask generator Gm predicts
alpha blending masks to composite generated foreground bodies with background images.
Finally, a patchGAN [5] based image discriminator D is deployed to ensure the generator
would produce perceptually realistic images. We further train two separated discriminators
for the cropped area of human face and fists. Table. B lists detailed components used in our
model.

Training. At training time, we use only the low FPS video Vlow = {I0..., IT} and the cor-
responding 2D poses Plow = {p0, ..., pT}. We train the network by reconstructing It at each
time step using the corresponding pose pt . For instance, when synthesizing the frame It at the
time step t, we precompute the background image B̂t using the image pair (It−1, It+1). Our
network generate the foreground image F̂t , the alpha mask M̂t , and the composition image Ît
via Equation 6. For each training iteration, we generate K consecutive frames by iteratively
providing the image generated at the previous time step (i.e., Ît−1). Note that ground-truth
image I0 is provided instead for synthesizing the first frame at each iteration. Besides the loss
described in Sect. 3.3, the LSGAN [9] loss is applied to the neural rendering model and the
discriminator during training. The adversarial loss applied to the discriminator is formulated
as:

LD
adv =

1
2
E(pt ,Ît )

[
D(pt , Ît)

2]+
1
2
E(pt ,It )

[
(D(pt , It)−1)2

]
.

(A)

The adversarial loss for generator is calculated as:

LG
adv = E(pt ,Ît )

[(
D(pt , Ît)−1

)2
]
+λFMLFM, (B)
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Figure C: Components of SPADE residual block. The SPADE residual block contains two
spatially adaptive normalization (SPADE) layers, two leaky ReLU layers, and two convolu-
tional layers. The conditional feature provides additional pose-aware appearance informa-
tion for generating the human body via spatially adaptive normalization.

where the discriminator’s feature-matching loss LFM , comparing the real and generated im-
age using the activations of the discriminator, is calculated as:

LFM = E(pt ,It ,Ît )

M

∑
j=1

1
N j
‖D( j)(pt , Ît)−D( j)(pt , It)‖1. (C)

With M being the number of discriminator layers, N j the number of elements in the j-th layer.
The expectation is computed per mini-batch, over the input pt , It , and Ît .

Inference. The trained neural rendering model can synthesize intermediate frames Iτ not
seen in the low FPS video Vlow. To be specific, we first obtain the corresponding pose
pτ following the motion modelling procedure described in Sec.3.2. We then interpolate
the background image B̂τ from the two nearest frames to τ in the low FPS video. When
generating the intermediate frame for 3-frame-triplet evaluation, the real image is provided
as previous frame input. While when synthesizing multiple frames between two low FPS
keyframes, the generated previous frames are provided iteratively. Finally, we obtain the
desired frame Îτ following Equation 6.

Hyperparameters. We train our network using Adam optimizer with a learning rate of
10−4 for the neural rendering network, 4×10−4 for the discriminator, and first- and second-
momentum of 0 and 0.99. For each training iteration, we sample T = 3 continuous frames
as a training sample and recovery the middle frames in each feed-forward pass. Random
cropping and rotation are applied to the training images for data augmentation. To mitigate
possible overfitting to the input background images, we also blur out random human body
parts in background images. The batch size is set to 2, T is increased by 1 and the learning
rate is decayed with a scale of 0.5 for every 12 epochs. We set the weights of the loss terms
to be λFM = 10, λpercep = 0.5, λim = 10, λ f g = 10, λmask = 2.0 across all experiments. The
training takes one day on a RTX 2080Ti for 60 epochs.
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layer type(s) out channels stride activation
SPADE Residual Network

1 3×3 Conv 16 1 LReLU
2 3×3 SPADE ResBlk. 32 1 LReLU

3×3 Avg. Pooling 2
3 3×3 SPADE ResBlk. 64 1 LReLU

3×3 Avg. Pooling 2
4 3×3 SPADE ResBlk. 128 1 LReLU

3×3 Avg. Pooling 2
5 3×3 SPADE ResBlk. 256 1 LReLU

3×3 Avg. Pooling 2
6 3×3 SPADE ResBlk. × 6 512 1 LReLU
7 3×3 SPADE ResBlk. 256 1 LReLU

UpSampling 2
8 3×3 SPADE ResBlk. 128 1 LReLU

UpSampling 2
9 3×3 SPADE ResBlk. 64 1 LReLU

UpSampling 2
10 3×3 SPADE ResBlk. 32 1 LReLU

UpSampling 2
11 3×3 SPADE ResBlk. 16 1 LReLU
12 1×1 Conv 3 1 Tanh

Conditional Feature Encoder
1 3×3 Conv 64 1 LReLU
2 3×3 Conv 128 2 LReLU
3 3×3 Conv 256 2 LReLU
4 3×3 Conv 512 2 LReLU
5 3×3 Conv 1024 2 LReLU

Mask Generator
1 3×3 Conv, IN 32 1 LReLU
2 3×3 Conv, IN 64 2 LReLU
3 3×3 Conv, IN 128 2 LReLU
4 3×3 Conv, IN 256 2 LReLU
5 3×3 Conv, IN × 4 256 1 LReLU
6 3×3 ConvT, IN 128 2 LReLU
7 3×3 ConvT, IN 64 2 LReLU
8 3×3 ConvT, IN 32 2 LReLU
9 1×1 ConvT 1 1 Sigmoid

Discriminator
1 3×3 Conv, IN 32 1 LReLU
2 3×3 Conv, IN 64 2 LReLU
3 3×3 Conv, IN 128 2 LReLU
4 3×3 Conv, IN 256 2 LReLU
5 3×3 Conv, IN 512 2 LReLU
6 1×1 Conv 1 1 Sigmoid

Table B: Network details of the neural rendering model. ‘LReLU’ denotes leaky ReLU
activation, and ’IN’ denotes instance normalization layer, and ’ConvT’ denotes transposed
convolution layer.
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Figure D: Example of body occlusion. Even a part of human body is occluded, the motion
modelling network can still generate accurate motion for the visible parts and hallucinate the
occluded parts. Our neural rendering model can use the previous generated frames and the
providing pose to generate plausible human images.

No occlusion 20% occlusion
Ours 0.456 0.668 (-45.6%)
W/o denoising 0.474 1.980 (-317.7%)

Table C: Analysis of joint occlusion. We report average L1 loss on our full model and the
variant of training without noisy/missing joints. Without our training strategy, occlusion can
introduce 3 times more error to motion modelling.

C Additional Results

C.1 Robustness to Joint Occlusion and Error
We provide additional details and experiments to explain how our human motion model
tackles with joint occlusion. Since our model is trained with noise and randomly drop-out
joints, it learns to infer occluded joints from the nearby joints positions and temporal patterns.
As shown in Fig. D, in a case where a proportion of body joints are consistently occluded,
the motion modelling network can still generate accurate motion for the visible parts and
hallucinate the occluded parts. While the hallucination might not agree with the ground-
truth motion, the neural rendering model can still use the previous generated frames and the
providing pose to generate plausible human images. To further quantify this, we simulate
occlusions by randomly removing 20% joints in 20% of the test motion sequences. Without
our training strategy, the avg L1 error increases from 0.668 to 1.980. This corresponds to a
317.7% error increase over the full joint condition (0.474) whereas ours is only impacted by
46.5% (see Table C).

Fig. E visualize the ablation study in Sect. 4.3 and the effect of our training strategy.
It can be seen that false and missing input joints can largely influence the resulting motion.
Fig. F shows a practical example that our motion model is able to correct the false detections
from off-the-shelf 2D pose detectors. If the model is trained without denoising function (i.e.,
simply follow the linearly interpolated motion), the false skeletal images could influence the
later generation of human bodies.
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Figure E: Qualitative results of human motion modelling on AMASS. We overly the
results from our method (blue), our method without the denoising network (red), and linear
interpolation (green) with the ground truth (gray). Our generated motion is closer to the
ground-truth, and contains less erroneous joints.

W/o Denoising Ours W/o Denoising Ours

Figure F: Visualization of interpolated poses. We overly the predicted poses on the ground-
truth images. Our method is robust to noisy detections and produces more realistic pose.
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Figure G: Performance stability over time. We generate 15 frames between two existing
frames 0 and 16 using our method and three state-of-the-art baselines CAIN, DAIN and QVI.
Our method performs consistently well over time and can better handle frames far away from
the input low FPS frames.

C.2 Performance Stability for Multi-frame Interpolation.
Intuitively, the quality of interpolated frames depends on the distance to the sources in time
horizon. In contrast to the evaluation protocol defined in Sec. A.2 where only one frame
is generated between two consecutive frames, 15 frames are generated between two low
FPS video frames (indexed as 0 and 16) by our method and the other three best performing
baselines, namely CAIN, DAIN and QVI. As shown in Fig. G, existing methods have small
error near input frames, but larger error when interpolated frames are far away from input
ones, e.g. frame 8. On the other hand, since our method generates images conditioned on
the pose produced by motion model, the generation quality is more consistent along the
interpolated frame index.

C.3 Additional Qualitative Comparisons
Fig. H shows the qualitative comparison between our method and existing human image
generation networks. We train their network [13, 17] using the same data as ours (i.e., the
low FPS videos). Since these methods do not consider human pose interpolation, we provide
them ground-truth pose as input for inference. As can be seen, our method can better handle
background dynamic and human appearance details such as background shadow and body
texture.

We provide more qualitative comparisons with SOTA video interpolation methods on the
test sequences of HumanSlomo in Fig. J. On the other hand, Fig. I shows some failure cases
of our method. The neural rendering module might produce artifacts if the background and
foreground share similar texture. It might also generate body parts that lose 3D details since
2D skeletons cannot capture the 3D body structure well. We believe this is an interesting
direction for future work, for example modelling the human motion and generating human
bodies with more complex 3D body representations.
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OursVid2vid PATN

Figure H: Qualitative comparison with state-of-the-art human image generation meth-
ods. We show that the direct use of their methods would not produce desirable image details
such as background shadow and body texture.

GT Ours2D Joints

GT Ours2D Joints

Figure I: Failure cases. Top: A case that failed to generate correct body textures. Bottom:
A failure case that lose 3D structural details due to the limitation of 2D skeleton.
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Figure J: Additional qualitative results on HumanSloMo dataset.
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