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1 Direct Comparison with StarGANv2 and MaskGAN
In this section, we present a detailed comparison between current state-of-the-art image-
to-image facial translation models. In particular, we benchmark our FacialGAN approach
against StarGANv2 [1] and MaskGAN [2]. Table 1 shows a concise summary, emphasizing
the main properties of each model.

We start outlying the differences of our proposal regarding StarGANv2 [1]. For the
preservation of the target attributes, to guarantee the identity, [1] employs a pretrained net-
work based on an adaptive wing loss [4] that generates heatmaps. These heatmaps, however,
do not provide fine-grained control over the attributes. They just signalize to the genera-
tor whether to keep or not all the facial attributes when applying the styles. Besides this
limitation, the heatmaps require the input images to be vertically and horizontally aligned
to have the eyes at the centre. Otherwise, attribute preservation may fail. Furthermore, the
system relies on domain-specific modules to enforce semantic information, such as the out-
put’s gender. As a result, the architecture and its performance are dependent on the number
of different semantic labels with which the system works, limiting its scalability. Overall,
[1] can successfully synthesize images of various styles, but with scalability issues and no
pixel-wise control. FacialGAN, on the other hand, can manipulate facial attributes at the
pixel level while also applying styles from reference images. To accomplish this, we have
made a number of changes to our model. First, we modify the generator to handle semantic
mask labels as input. This modification has two direct consequences: (1) it removes the
heatmaps dependency, greatly simplifying the system, and (2) it allows the pixel information
to be used to control the attributes. To make use of such information, we add a segmentation
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Method scalability style trans. attr. manipulation editing control train stages
StarGANv2 [1] limited good limited none one
MaskGAN [2] good limited good good two
Ours good good good good one

Table 1: Summary of main differences between our model, StarGANv2 and MaskGAN.

network, a modified U-Net [3], and a customized loss function that interacts with semantic
input signals. More specifically, we propose a new local segmentation loss that propagates
informative gradients only from the region of interest, i.e. the target pixel-wise attributes. In
this way, we ensure that the generated output adheres to the mask specifications. Finally, the
addition of geometry information (segmentation mask) might be seen as an alternative to se-
mantic information, allowing us to scale up our model to work with more attributes without
adding complexity, i.e. dedicated modules.

The differences between FacialGAN and MaskGAN [2] are also notable. Both models
are radically different in terms of design. [2] trains in a fairly complex setup, which is di-
vided into two stages with three different networks. In the first stage, the model learns the
mapping between the semantic mask and the output image. Once it has converged, they start
training the second stage, where the method learns to model the user editing behaviour when
manipulating semantic masks. Additionally, there is an encoder-decoder architecture called
MaskVAE, which is in charge of generating geometrical masks for training, that needs to be
pretrained beforehand. All the training relies on the optimization of an adversarial, feature
and perceptual loss. Despite synthesizing successfully images with different pixel-wise con-
trol, [2] is not designed for advanced style transfers. In other words, it lacks the ability to ap-
ply morphological changes when applying style, resulting in a very limited approach to style
transfer. FacialGAN, on the other hand, is capable of extracting and applying cutting-edge
style transfers, as well as modifying the geometry of the image if needed. We accomplish
this by using a one-step training method in which the model learns the style while manipulat-
ing the semantic masks. As a result, FacialGAN has a more compact training that produces
superior distribution-level metrics (FID and LPIPS). Identity preservation and attribute ma-
nipulation are two other areas where our proposal outperforms [2]. Mainly due to our new
local segmentation loss, that forces the generator to focus only on the target regions, leaving
the rest unmodified. Thus, the outcomes preserve unaltered the main features, respecting the
identity, with pixel-wise control in case the user desires to change some attributes.

2 Facial Editing Toolbox

We propose an interactive facial toolbox that allows easy manipulation of both styles and
attributes. The user chooses the source and reference images, and our model generates the
desired combination in the desired direction. In addition, the user can change the default
mask, and the changes are reflected in the output. We believe that such a tool can be very
useful for validating results and allowing practitioners to continue to improve on facial ma-
nipulations. The source codes, pretrained models, and facial editing toolbox can be found
on Github. We also provide a video tutorial where we show how to use the toolbox. It is
available on Youtube.
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3 Additional Results
Figure 1 displays additional comparisons with the baseline models on reference-guided gen-
eration. Furthermore, we provide additional image synthesis results where we apply an
extensive variety of styles and mask’s modifications. Figure 2, Figure 3 and Figure 4 dis-
play generated results when mouth, nose or eyes (eyebrows) have been altered through their
segmentation masks. The results, where more than one attribute was changed, are shown in
Figure 5. Finally, we run a gender translation experiment where the source and the reference
images are the same. This way, if we exchange the original gender, we still get the “same”
person with the same style, but with the opposite gender. Results are displayed in Figure 6.

Figure 1: Qualitative comparison of style transfer on reference-guided generation.
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Figure 2: In this picture, we show that our model is able to learn to transform a source image
to reflect the style of a given reference image while being consistent with the semantic mask.
In particular, we only modify the mask of the mouth. The source and style reference images
appear in the first two columns, whereas the respective transformation masks are given in
column 3 and 5. The columns 4 and 6 show the generated images.



DURALL, JAM, STRASSEL, YAP, KEUPER: FACIALGAN 5

Figure 3: Our model is able to learn to transform a source image to reflect the style of a
given reference image while being consistent with the semantic mask. In particular, we only
modify the mask of the nose. The source and style reference images appear in the first two
columns, whereas the respective transformation masks are given in column 3 and 5. The
columns 4 and 6 show the generated images.
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Figure 4: Our model is able to learn to transform a source image to reflect the style of a
given reference image while being consistent with the semantic mask. In particular, we only
modify the mask of the eyes (eyebrows). The source and style reference images appear in the
first two columns, whereas the respective transformation masks are given in column 3 and 5.
The columns 4 and 6 show the generated images.



DURALL, JAM, STRASSEL, YAP, KEUPER: FACIALGAN 7

Figure 5: Our model is able to learn to transform a source image to reflect the style of a
given reference image while being consistent with the semantic mask. In particular, we
modify more than one attribute of the mask. The source and style reference images appear
in the first two columns, whereas the respective transformation masks are given in column 3
and 5. The columns 4 and 6 show the generated images.
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Figure 6: Our model is able to apply gender translation. The source and style reference
images are the same, and appear in the first columns of each block. The respective synthetic
results from the gender transformation are given in second columns.
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