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1 Overview
Due to the space limitation in the main manuscript, additional details of some of the modules
are presented in this supplementary material. Specifically, we introduce the details of Dataset
Generation Pipeline (DGP) such as training strategy of the refinement network. Moreover,
we present details of the proposed stabilization network; training losses, run-time, ablation
and user study in this supplementary material. Additionally, the expanded view of the quali-
tative results is also included in this supplemental.

2 Additional Details of DGP
In this section, we discuss additional details of our DGP. Generating a high-quality dataset for
video stabilization through iterative frame interpolation schema needs additional refinement
steps due to the artifacts produced by the iterative frame interpolation, as discussed in the
main manuscript. These artifacts are shown in Fig. 1. After extensive experimentation and
observation, we concluded that the introduction of a refinement step in every k iterations
through the frame interpolation models can remove the produced artifacts.

The refinement network presented in our work takes advantage of the image quality
improvement techniques presented in [2, 8, 10, 12, 13]. For our refinement, we use a
modified version of the ResNet-based network proposed by Mehdi et al. [13] with an in-
tegrated channel attention module from [2] to focus on the high-level features along with
the spatial relations in the consecutive frames. The model architecture and the integrated at-
tention module is illustrated in Fig. 2. The refinement network takes in a single degraded
frame [It ] (acquired through iterative frame interpolation) along with four original high-
quality neighboring frames [Ut−2,Ut−1,Ut+1,Ut+2], and produces a refined version [I′t ] of
the degraded frame without modifying the spatial integrity of the degraded frame. Note that,
[Ut−2,Ut−1,Ut+1,Ut+2] are high-quality frames taken from the input unstable video frames.

*Equal contribution.
*Corresponding author.

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Choi, Kim, Han, Xu, and Lee} 2020

Citation
Citation
{Lim, Son, Kim, Nah, and Muprotect unhbox voidb@x protect penalty @M  {}Lee} 2017

Citation
Citation
{Ma, Rao, Cheng, Chen, Lu, and Zhou} 2020

Citation
Citation
{Nah, Hyunprotect unhbox voidb@x protect penalty @M  {}Kim, and Muprotect unhbox voidb@x protect penalty @M  {}Lee} 2017

Citation
Citation
{Sajjadi, Scholkopf, and Hirsch} 2017

Citation
Citation
{Sajjadi, Scholkopf, and Hirsch} 2017

Citation
Citation
{Choi, Kim, Han, Xu, and Lee} 2020



2 ALI, YU, KIM: MOTION BLIND DEEP VIDEO STABILIZATION

Figure 1: (a) Input unstable video frames. (b) Produced artifacts after 20 iterations with
CAIN [2].

2.1 Refinement Details
• Refinement network training
As shown in Fig. 3, we need synthetic video frames [C1,C2,...,Cn] to train the refinement
network. This synthetic dataset is generated with the help of a physics-based sequential
cropping mechanism that moves a cropping window over high-quality static frames to simu-
late the linear motion present in the videos acquired through hand-held cameras (Fig. 3 (Step
1)). Then, alternate frames [C1,C3,C5, ...] from this synthetic video are passed through the
iterative frame interpolation configuration (Fig. 3 (Step 2)) for an odd number of iterations
to generate degraded frames [i2, i4, i6, ...]. This strategy of utilizing alternate frames exploits
the idea that the frame interpolation modules are trained to generate intermediary frames og
the given frames. By generating middle frames between alternate frames, we get the modi-
fied versions of skipped frames. The original skipped frames [C2,C4,C6, ...] of the synthetic
video can now be treated as the high-quality targets of the degraded frames.

• Refinement network configurations
During the training phase of our refinement network, neighboring frames from the set of al-
ternate frames ([Ct−2,Ct−1,Ct+1,Ct+2]) of the synthetic video are used along with a degraded
frame it . Whereas, during the finalized DGP (as shown in Fig. 4), the actual unstable neigh-
boring frames ([Ut−2,Ut−1,Ut+1,Ut+2]) are used to refine the generated stable frames. In our
arrangement, k (number of iterations before the refinement step) was empirically evaluated
to be 4 for the frame interpolator CAIN [2]. We experimented with various loss functions
and architectures before selecting the optimum configuration for effectively removing the
generated artifacts. A visual comparison of the effects of tested configurations on the gen-
erated frames and edge profiles is provided in Fig. 5. Almost all of the investigated con-
figurations managed to get rid of the produced artifacts but compromised the sharpness of
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Figure 2: (a) Refinement network architecture. (b) A slightly modified version of channel
attention module as used by [2].

the resulting frames. Therefore, our finalized refinement network is trained with a modified
RGB-based gradient-map loss (described in Sec. 2.2) inspired from the gradient guidance
presented in [10] along with a conventional L1 loss, as shown in Fig. 3 (Step 3). From
Fig. 5, it can be deduced that, the model with attention module along with the gradient-map
loss produces the sharpest results. The quality of the frames produced by the refinement
network as compared to the original input frames and degraded frames (generated by 20
iterations of CAIN [2]) can be assessed through Fig. 10.

2.2 Gradient-map Loss

The gradient-map loss used in our application utilizes the conventional horizontal and verti-
cal edge detection kernels in all RGB channels of the generated frames and the target frames
to acquire the edge profiles. These edge profiles are concatenated in channel dimension to
assist the model in effectively learning the underlying reasoning to generate artifact free and
sharp images. This channel-wise convolution and concatenation operation is denoted by
M(∗) in Fig. 3 (Step 3). The obtained RGB edge profiles are compared with the help of a
conventional L1 loss.
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Figure 3: Training pipeline of the refinement network. (Step 1) High-quality frame gener-
ation through sequential linear cropping and splitting into two groups namely, sharp videos
and GT. (Step 2) Introduction of artifacts to the training data through iterative frame inter-
polation. (Step 3) The training process of the refinement network with L1 and Gradient-map
Loss. The subscript t signifies temporal relation of instantaneous frames and their neighbor-
ing frames.

3 Details of Losses in Stage 3 (Strengthening)
This section highlights the details of additional losses and hyper parameters used in the stage
3 of training the stabilization network. The final loss for training at this stage is given by the
following equation,

L= λ1 ·Lφ +λ2 ·LCX +λ3 ·Ltd +λ4 ·Lid +λ4 ·Lcml, (1)

where, Lφ , LCX , Ltd , Lid and Lcml represent perceptual, contextual, temporal discriminator,
image discriminator and contrastive motion loss, respectively. At this stage of the training,
the generator has already learnt to produce high-quality stable frames, but the stability and
quality of the generated frames can be further enhanced with the introduction of targeted
loss functions addressing each aspect of the video generation process. Specifically, we let
the generator focus on strengthening the three main aspects of digital stabilization namely,
Stability, Naturalness and Content Preservation. We will define each of the aspects and their
devised losses in the following subsections.

3.1 Stability
In order to further enhance the learnt stability, we propose a novel contrastive motion loss
which utilizes an off-the-shelf video ResNet trained for action recognition [6] along with
a triplet loss [4]. This loss does not require any prior or estimate of the motion in input
sequence and defines it in abstract embeddings. To formulate this loss, we utilize the sta-
ble videos provided in the DeepStab [14] dataset. Notably, we cannot directly use stable
videos from DeepStab dataset as these videos often contain a perspective mismatch. To
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Figure 4: Our finalized dataset generation pipeline (DGP). The refinement module takes in
the generated frames It after k = 4 together with the original high-quality unstable frames
Ut−2, ... , Ut+2 and generates the refined frame I‘t . This interpolation-refinement cycle is
repeated for m = 5 times to obtain temporally stable counterparts of the unstable videos.

overcome this problem, we firstly find the closest corresponding patch of unstable frames
in stable video frame (with the help of template matching), and sequentially crop the sta-
ble frames to get a sequence of patches that closely correspond to the content of unstable
patches. These unstable and stable patches are passed through the video ResNet to acquire
negative and anchor embeddings, respectively. Meanwhile, the positive embeddings are ac-
quired by processing the unstable patches through the stabilization network and the video
ResNet sequentially. The triplet loss, minimizes the distance between the positive and the
anchor embeddings while maximizing the same for anchor and negative embeddings. With
the introduction of this loss, an average increase of 2−3% is observed in the final stability
score. The contrastive motion loss is defined as follows,

Lcml = max(d(A,P)−d(A,N)+α,0) , (2)

d(x,y) = ‖x− y‖2, (3)

where, A, P and N denote anchor, positive and negative sequence embeddings, respectively,
and the α represents the margin parameter. In our formulation, α was equated to 1.0. The
weight parameter λ4 for this loss was 0.01, this parameter was evaluated empirically.
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Figure 5: Sharpness comparison of the frames generated by the various configurations of the
refinement network.

3.2 Naturalness
Up to this point, the model was trained using individual frames rather than sequences of
frames. Generally, this frame dependant training coupled with adversarial learning strate-
gies can often introduce undesirable temporal inconsistencies (e.g., wobble effect) in the
generated videos as discussed in [3]. To overcome this problem, we propose a temporal dis-
criminator which discriminates between a natural sequence (DeepStab [14] stable) and an
artificial (generated) one. The temporal discriminator loss is defined as follows,

Ltd = EF ′t [log(Dt(F ′t ))]+EFt [1− log(Dt(G(Ft)))], (4)

where, Dt represents the temporal discriminator, whereas, Ft and F ′t denote sequences of
DeepStab [14] stable and generated stable frames. Through this loss, we can minimize the
temporal distortions in the generated videos. The contribution parameter for this loss was
empirically equated to be 0.1.

3.3 Content Preservation
When using the proposed temporal discriminator and contrastive motion losses, the models
can often learn to predict solid colored frames as they are stabler and temporally consistent.
In order to overcome this problem we employ certain reconstruction losses [7, 11] along
with an image discriminator to preserve the input image statistics. The Contextual loss [11]
is a loss function that is used for various image tasks with unaligned targets. We define our
contextual similarity in terms of VGG-19 features and use the unstable (unaligned) images
as contextual similarity targets for the generated frames based on the fact that the stabilized
videos should contain the content of input videos at different spatial locations. This loss is
defined as follows,

LCX =−log(CX(φ l( f ′t ),φ
l( ft))), (5)
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where, ft denotes the corresponding input frame of the stabilized frame f ′t and φ l represents
features extracted through layer l (relu_3_3) of a pre-trained VGG-19 network. In addition
to the Contextual loss CX(.), we also employ a VGG-based perceptual loss and an adver-
sarial loss for generating high-quality frames with similar content to the input frames. The
adversarial loss used is defined as follows;

Lid = E f ′t [log(Di( f ′t ))]+E ft [1− log(Di(G( ft)))], (6)

where, Di and G represent Image discriminator and the stabilization network, respectively.
The contribution parameters of both the perceptual and the image discriminator loss were set
to 0.1 throughout the third stage of training.

4 Implementation Details

The proposed stabilization network is implemented using PyTorch on a system with two
2080Ti GPUs. In each stage, various augmentation techniques like random flipping both hor-
izontally and vertically, resizing and reversing the frame order along with the conventional
image processing augments like random brightness, hue, gamma, and contrast adjustment
were employed to increase and modify the visual information present in the training sam-
ples. All the stabilization stages were optimized using ADAM optimizer, and the learning
rates for each stage was 0.0001, 0.00005 and 0.00001, respectively. The learning rate was
lowered in each successive stage in order to both retain and learn the different aspects of
video stabilization. The complete training process (all three stages) takes around five days
with roughly 70,000 training iterations in each step.

5 Run-time

Table 1. Time comparison
DIFRINT [1] 528ms
Robust L1 [5] 600ms
CAIN (20-iterations) [2] 1802ms
DGP (k=4, m=5) 2300ms
Ours 210ms

Table 1: Runtime comparison table.

The average per frame (640× 360 pixels) generation time comparison are provided in
Tab. 1. Through Tab. 1 and the qualitative results presented in this supplemental, it can
be deduced that our proposed model produces comparative results in a significantly lesser
time. All the experiments are conducted on the same hardware and software environment as
described in Sec. 4.
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6 Stability Metric
This metric defines the stability in terms of frequency component analysis. To calculate this
metric, the feature trajectories are analyzed in the frequency domain as follows

f x = FFT (V x), (7)

where fx is frequency representation of the translational and rotational camera trajectories
Vx. fx is acquired through the discrete 1D Fourier Transform of Vx after subtracting the DC
component. Here, x represents both translational and rotational trajectories. The stability
score is calculated according to the description provided by [14] as follows:

Sx =
6

∑
k=2

f x(k)/
n

∑
k=2

f x(k), (8)

where Sx represent the stability score for both the translational (St) and rotational motions
(Sθ ), and n is the number of total frequency components present in the signal. The final
stability score from both the calculated scores is acquired by taking the minimum as:

Sfinal = min(St,Sθ ). (9)

7 More Qualitative Results
Due to the space limitation, the qualitative results presented in the main manuscript were
down-scaled. This supplemental also provides expanded view of the qualitative results pre-
sented in the manuscript, and highlights the common artifacts produced by conventional
methodologies in figures 11–14.

8 Ablation Study

8.1 DGP hyper-parameter selection
Fig. 6 highlights the effects of iterative stabilization and refinement. Through this figure, it
can be deduced that in the results acquired after 20 iterations (m≥ 5), the stabilization effect
becomes saturated and excessive use of the refinement network also introduces a fading
effect in the produced dataset. Based on these observations, we select k and m to be 4 and 5
respectively throughout the process of dataset generation in our application.

8.2 Inter-stage ablation
After the first stage of training, the results produced by the proposed stabilization network
are stable but quite blurry. By overlaying the generated frames with the target frames (ac-
quired through DGP), it becomes evident that the model has learned the necessary high-level
reasoning to generate stable frames, as highlighted in Fig. 7 (a)-(b), where the red marks in-
dicate the positions of prominent corners in our target frames and the generated frames after
Stage 1. Furthermore, Fig. 7 (c) presents the frames produced after the Stage 2 of training.
It is evident from this comparison that the results produced by the second stage retain the
learned spatial relations during Stage 1 and contain much sharper edges as well. Whereas,
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Figure 6: A visual ablation for highlighting the effects of the iterative stabilization and re-
finement in various settings.

Stage 3 increases the overall stability by approximately 2-3%, and reduces the temporal dis-
tortions significantly. The quality of the results produced after the Stage 3 of training can be
assessed through the accompanied videos.

8.3 Ablation of Losses
In order to properly evaluate the contribution of the specialized losses used in the training
of our stabilization network we conducted a thorough ablation study and report our findings
with the help of the table provided below along with visual samples obtained from inferring
the mentioned models on one of the videos from the NUS dataset [9]. The table presents
the stability, cropping, and distortion scores of models trained with various losses. In the
table presented below, CML, Dv, Di and Cx denote Contrastive Motion, video discriminator,
image discriminator, and Contextual losses respectively. Whereas, "Stage - 1" and "Stage -
2" refer to the models obtained from the first two stages of training respectively.

Name Stability Cropping Distortion
Stage - 1 0.9016 0.9998 0.9947
Stage - 2 0.8918 0.9999 0.9963
CML only 0.9060 0.9928 0.9928
CML + Dv 0.9059 0.9999 0.9925
CML + Dv + (Di + Cx) 0.9057 0.9999 0.9975

Table 2: Quantitative comparison of the models trained with different loss functions.

Through Tab. 2 and Fig. 8, it can be seen that the highest and the best results (in terms
of stability and visual quality) are acquired through the final combination of losses. The
results produced through the models trained with only MSE loss (Stage - 1) produce quite
blurry results but their stability scores are higher than the model trained with perceptual
and adversarial loss of the second stage, this discrepancy occurs because the stability metric
perceives blurry videos as smoother than the sharper videos. After the second stage of the
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Figure 7: The results generated by our network after the both training stages. (a) The red
indicators mark the same positions on Our GT and the Stage 1 results. (b) Highlights the
alignment by overlaying the generated frames with the frames acquired by the Our GT after
the first training stage. (c) Quality improvement after the second stage.

training, if the model is trained with only the contrastive motion loss, the model learns to
compensate the jerky motion and a diminishing hue around the fast-moving objects can be
observed, this is taken care of by introducing a temporal discriminator loss (Dv) which helps
to restore the natural temporal semantics of the generated videos but does not fully restore
the integrity of the content present in the video streams. To tackle this issue, we introduce an
image discriminator along with a contextual loss. Through the introduction of these losses,
a striking restoration of original content integrity can be observed.

Furthermore, during our experimentation phase, an instance of our model was also in-
troduced to a single-stage training with all the finalized losses, but it was unable to achieve
the same level of stability as the models trained in multiple stages with different objectives
in each stage.

8.4 Patch size
During our experiments with the stabilization network, we experimented with different patch
sizes and deduced that the network trained with bigger patch sizes obtains similar stability
score with the networks trained with a relatively smaller patch size. Therefore, to speed up
the training process, we opt for a patch size of 220× 220 for our first 2 stages of training and
further reduce it to 160 × 160 for the third stage, to compensate for the calculation overhead
added by the 16 sequential frames used in that training stage.

9 User Study
As stated in the main manuscript, the metrics used for this task do not take quality of the
produced videos into account; therefore, a user study was conducted to properly evaluate
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Figure 8: Qualitative comparison of the models trained with different loss functions. (best
viewed on a computer screen)

the visual quality of the results generated by the proposed stabilization network. In order
to conduct the user study, we created an application that plays four videos generated by
Robust L1 [5], Adobe Premiere Pro 2018 CC, DIFRINT [1] and our stabilization network,
simultaneously. The placement of videos generated through different methods is random-
ized for fair evaluation. The application selects the videos from an address pool containing
paths to 144 stabilized videos (from NUS Dataset [9]) through each method. Each partic-
ipant evaluates five randomly selected videos. The interface of the user study application
allows the users to pause and replay videos. We asked the participants to judge the videos
based on the three aspects, stability, quality and cropping. The user study was conducted
with 31 participants, and the results of the user study are presented in Fig. 9. The repository
containing the generated dataset, code, pre-trained models, metrics and user study appli-
cation will be available on https://github.com/MKashifAli/Motion_Blind_
Video_Stabilization.

10 Video
Please refer to the provided supplementary videos for the comparative results of our stabi-
lization network.
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Figure 9: User study results of videos stabilized through Adobe Premiere Pro 2018 CC,
Robust L1 [5], DIFRINT [1] and the proposed motion blind stabilization network.
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Figure 10: Quality comparison of the input (a), CAIN [2] 20 iterations (b) and the generated
frames through the DGP (k=4, m=5) (c).

Figure 11: Expanded view of the Fig. 7, Example 1 presented in the main paper for better
qualitative comparison.

Figure 12: Expanded view of the Fig. 7, Example 2 presented in the main paper for better
qualitative comparison.
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Figure 13: Expanded view of the Fig. 7, Example 3 presented in the main paper for better
qualitative comparison.

Figure 14: Expanded view of the Fig. 7, Example 4 presented in the main paper for better
qualitative comparison.
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