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Figure 1: Video Inpainting result on human-focused real world HIN dataset: (a) Input frame
with mask (1728x960) (b) STTN (c) FGVC (d) Ours.

1 Loss Functions

The definition of loss functions are similar as in CPNet [3] and HiFill [6]. The main differ-
ence is how the output of the main steps is calculated, e.g., we use the joint alignment while
CPNet only uses the affine alignment. Also, our multi-scale spatial aggregation only applies
on the leftover mask region instead of the full mask as in HiFill. Also, note that the loss
functions are used to train the STA-Net which works on the downsampled low resolution
frames. The specific deﬁnitions are as follows:
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In above equations, X’ is the downsampled input frame at time ¢ and M" is its correspond-
ing input mask. Y’ is the final inpainting result of X’ and Y} is the ground truth for Y'. N
is the number of frames in each sample of the training videos. For our current training data,
N = 5. @ is the element-wise multiplication. In Equation 1, X" and M" " is the aligned
reference frame and its aligned mask computed by aligning the reference frame X" to X’
using the joint alignment module. In Equation 2 and 3, C,;spe i the aggregated temporal
attention scores (see the main paper and [3] for the definition); M, frover is the leftover mask
for frame ¢ which is defined as Mj, Frover = M' ® (1 = Cyisipie)- In Equation 5 and 6, Y!
is the combination of the inpainting output Y’ in the hole region and the input X’ outside
the hole; p is the index of the pooling layer in VGG-16 [5] and ¢,(-) is the output of the
corresponding layer; Gﬁ() is the gram matrix multiplication [2]. In Equation 7 and 8, X’
is the generator output which is defined as X' = G(X',M!, frover)» Where G(-,-) is the gener-
ator; D(-) is the discriminator and P, is the distribution of the input frames. Note that the
adversarial training loss is designed in the same way as in [6]. More details about defining
the WGAN-GP loss for the multi-scale spatial aggregation can also be found in [6]

2 More Training Details

In this section, we provide more details about training the STA-Net. The network is trained
on the proposed synthetic training dataset which contains numerous short video clips and
the ground truth object masks. We train the model on 2 Tesla V100 GPUs for 10 epochs
with the batch size set to 40. In our experiments, we increase the weight of L, so that
the alignment module gets trained first and the later training converges faster. The joint
alignment and temporal aggregation parts of the network are warmed-up for 2 epochs before
adding the spatial aggregation module to the network for training stability reasons. The
model is implemented in PyTorch.

3 More Experiment Results

Qualitative comparison. In Figure | and 2, we show more results for qualitative com-
parisons of our methods with the state-of-the-art learning and flow-based methods on the
synthetic Syn-DS™ and real world HIN dataset. We also attach a demo video that compares
results from different methods for video inpainting on 1080p videos from the DS™ [4] and
the HIN dataset. Note that some baselines cannot directly run on 1080p videos due to mem-
ory constraint. Therefore, we run these baselines on 1792x960 resolution and then resize the
output to 1080p. The improvements of our method upon others can be observed more clearly
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Figure 2: Video inpainting results on Syn-DS™ dataset: (a) Input frame with mask
(1728x960) (b) STTN (c) FGVC (d) Ours (e) Ground Truth.

70%
60%

50% W Ours
40% = FGVC
30% CPNET
0,
igo/; I l W STTN
0% . — . - B N . ——
Rank 1 Rank 2 Rank 3 Rank 4

Figure 3: User study on 30 tasks composed of videos from DS™* and HIN. “Rank x” means
the percentage of results from each model being chosen as the x-th best.

in the video. The results show that the learning based method STTN [7] tends to generate
blurry inpaintings and the flow-based method FGVC [1] may produce artifacts near the mask
boundaries. Our results are more temporally coherent and visually appealing.

User Study. In the user study, there are 30 tasks composed of video inpainting results
generated at 1728x960 resolution of the DS™ and HIN dataset . In each task, the input video
with the masks is first shown to the user, then results of the four methods are randomly
arranged. The user is asked to rank the four results based on two criteria: 1) whether the
inpainted videos look like real; 2) whether the inpainting results are spatially and temporally
consistent. Figure 3 summarizes the user study results. It can be found that our results are
comparable to the state-of-theart flow-based method FGVC while outperform the learning-
based methods CPNet [3] and STTN comfortably for the high resolution videos. Another
important observation is our method has the lowest percentage of being ranked as the last
which shows the robustness of our method.
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