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1 Overview
In this supplementary document, we provide APBEV scores for the configurations ablation
study in the 3D object detection task. As for the depth prediction task, we present results
on the KITTI validation set [2] and the NYU Depth V2 test set [4]. Moreover, we present
detailed qualitative comparison to demonstrate the effectiveness of deep line encoding.

2 APBEV in Ablation Study
APBEV is a slightly easier metric than AP3D, because the vertical component is ignored when
computing the bound box overlap. As shown in Table 1, we observe a significant improve-
ment by adding the coordinate map or the line vector to the VisualDet3D [3], which is con-
sistent with the results in AP3D. When combining the above two techniques, the performance
for easy case is further improved slightly.

3 Depth Prediction on Different Datasets
We present experiment results on the KITTI validation set [2] in Table 2. After adding the
deep line encoding to the backbone, the performance of GAC [3] is improved under all the
metrics, demonstrating the effectiveness of our design.

We further evaluate the deep line encoding on the NYU Depth V2 data set [4]. It consists
of 120,000 images captured in indoor scenes. Following the official split, we use 249 scenes
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Configuration Coordinate Line Vector APBEV
Easy Moderate Hard

a 29.70 20.98 16.20
b ✓ 33.12 22.54 16.81
c ✓ 33.25 22.64 17.01
d ✓ ✓ 33.65 22.34 16.94

Table 1: APBEV scores for different configurations ablation study.

Method SILog sqErrorRel absErrorRel iRMSE
GAC [3] 9.64 1.22 6.43 7.33

+ Line Encoding (ours) 9.36 1.13 6.14 7.21

Table 2: Performance on KITTI validation set for depth prediction.

for training and 215 scenes (654 images) for testing. In the training set, 24,231 images and
depth maps are associated and sampled using timestamps by even-spacing in time. We train
and test on the center cropping proposed by Eigen et al. [1].

The network structure and the training hyper-parameters are the same as in KITTI data
set, except that we removed the ground-aware convolution because it’s designed for au-
tonomous driving scenarios.

NYU Depth V2 data set [4] is captured in indoor scenes by Microsoft Kinect. Thereby
the camera poses with respect to the ground plane are more variable than in KITTI, and
the simplified projection model might be inapplicable in a lot of images. However, we still
observe an improvement in Table 3 with deep line encoding. The improvement shows that
the line information is beneficial even in indoor scenes.

Method SILog sqErrorRel absErrorRel iRMSE
GAC [3] 13.72 3.79 13.15 8.67

+ Line Encoding (ours) 12.71 3.20 12.44 8.22

Table 3: Performance comparison on NYU Depth V2 test set.

4 Qualitative Comparison for 3D Object Detection

We present qualitative results in Figure 1 and 2 on KITTI validation set [2] for 3D object
detection. A notable observation from Figure 1 is the predicted depth of distant cars is more
accurate with the help of deep line encoding. In Figure 1 (a) and (b), the predicted bounding
boxes from deep line encoding have larger overlap with the ground truth. In Figure 1 (c) and
(d), VisualDet3D [3] even filters out the prediction for distant cars due to low confidence.

Figure 2 shows the cases where there are slopes or steps. In Figure 2 (a) and (b), deep
line encoding helps to predict more accurate bounding boxes for cars on slopes. When there
are steps, as shown in Figure 2 (c) and (d), more cars are located correctly with the help of
deep line encoding.
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5 Qualitative Comparison for Depth Prediction
We present qualitative results in Figure 3. The first column shows the input image. The sec-
ond and third columns show the error map of deep line encoding and GAC [3] respectively.
The error map indicates the absErrorRel for the predicted depth map. Following Uhrig et
al. [5], correct estimates are in blue while wrong estimates are in red color tones.

The first four rows show the cases where there are slopes. With deep line encoding, the
prediction for guardrails, road surface, and trees is more accurate. In the next four rows,
although the road is approximately horizontal, we notice the deep line encoding can help to
refine the prediction for vertical structures, such as the wall. The rest of the examples show
our method yields better accuracy on the cars and bushes that are on the steps.
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(a) (b)

(c) (d)

Figure 1: Qualitative comparison in examples of distant cars. From top to bottom: input
image, predictions from deep line encoding and VisualDet3D [3]. The green and red boxes
represent the ground truth and prediction respectively.
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(a) (b)

(c) (d)

Figure 2: Qualitative comparison in examples of slopes and steps. From top to bottom: input
image, predictions from deep line encoding and VisualDet3D [3]. The green and red boxes
represent the ground truth and prediction respectively.
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(a) Image (b) Error Map (ours) (c) Error Map of GAC [3]

Figure 3: Qualitative comparison to GAC [3] on the validation set of KITTI single-image
depth prediction benchmark.
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