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1 Evaluation Setting Details

In Sec 4.1 we mention that we choose three settings to benchmark prior work and evaluate
TADeT. These three settings, described as a tuple (y,a), are as follows: i) (Smiling, High
Cheekbones), ii) (Wavy Hair, Male), and iii) (Wavy Hair, Wearing Lipstick). Here we pro-
vide details on the choice of these three settings.

1.1 Smiling with High Cheekbones
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The first setting we evaluate on is (Smiling, High .,
Cheekbones) (See Fig 1). We notice that there is
a significant skew in the distribution of the CelebA
dataset, where most “Smiling” faces are correlated .,
with “High Cheekbones” and most “Not Smiling”
faces are correlated with “Not High Cheekbones”.
However, we understand that not all such correlations

will necessarily translate to a model bias. There- Fjgure 1;Sﬂi§uu dataset distrﬂ";{jﬁgn of
fore, we analyze the true positive rate and false pos-  task, protected attribute tuple (Smil-
itive rate of a transformer trained on this dataset to  ing High Cheekbones).

predict the “Smiling” attribute, for each setting of

the protected attribute “High Cheekbones”. We ob-

tain the following results: TPR,—; = 92.83%, TPR,—o = 67.76%, FPR,—; = 9.65%, and
FPR,—o = 2.94%. Clearly, the model performs significantly worse on correctly predicting
“Smiling” when the individual does not have “High Cheekbones” (a = 0). Furthermore, the
model has a 6.71% larger FPR for the “High Cheekbones” group (¢ = 1). This confirms that
the model indeed has a strong bias of (spuriously) correlating the presence of “High Cheek-
bones” with whether they are “Smiling”. Due to this clear bias, we choose (Smiling, High
Cheekbones) as our first setting for evaluation.
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1.2 Wavy Hair with Male
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Next, we evaluate on (Wavy Hair, Male) (See Fig
2). First, we notice that the dataset contains less
“Male” individuals (28.5%) than “Not Male” indi- .
viduals (71.5%). Due to the fact that “Male” is un- o
derrepresented in the data, we suspect that the model =~ ==
will not be able to learn as strong of a representation
of the images with the “Male” attribute as it will for o o - HoT e ar
the “Not Male” attribute, which could lead to some Figure 2: Full datgset distribution of
type of bias. Next, we notice that most “Male” indi- tasl.c, protected attribute tuple (Wavy
viduals are labeled as “Not Wavy Hair”, which could Hair, Male).

cause a spurious correlation between these two at-

tributes. When analyzing a Transformer trained on the “Wavy Hair” prediction task, we no-
tice exactly that: a high difference in TPR where TPR,—; = 36.06% and TPR,—o = 67.92%.
This indicates that a (spurious) dataset correlation of “Male” with “Not Wavy Hair” is being
learned by the model, leading to a large bias wherein the model is overpredicting “Male” to
have “Not Wavy Hair”.
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1.3 Wavy Hair with Wearing Lipstick
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Finally, we evaluate on (Wavy Hair, Wearing Lip- won
stick) (See Fig 3). There is a natural correlation in
the dataset where most “Male” individuals are “Not
Wearing Lipstick”, and vice versa. Since “Wearing
Lipstick” and “Male” are correlated, and “Male” and
“Wavy Hair” are correlated (as shown in 1.2), we
want to see if the bias that is present when the pro-
tected attribute is “Male” will persist when we set
the protected attribute as “Wearing Lipstick”. Look-
ing at the dataset distributions themselves, we no-
tice that the number of people “Wearing Lipstick”
and “Not Wearing Lipstick” is closer to 50/50 than in the previous setting (protected at-
tribute="Male”). Next, we notice that there is a correlation in the dataset of people with
“Wavy Hair” and people “Wearing Lipstick”. After training a transformer, we notice that the
Equalized Odds and Balanced Accuracy Difference are almost as high as the (Wavy Hair,
Male) setting. Therefore, we conclude that this setting will be a good test-bed, as the distri-
bution is not as clearly skewed as (Wavy Hair, Male), but there is poor performance on both
fairness metrics Equalized Odds and Balanced Accuracy Difference.
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Figure 3: Full dataset distribution of
task, protected attribute tuple (Wavy
Hair, Wearing Lipstick).

2 Balanced Accuracy Difference Use Cases

In Sec. 4.1 of the main paper, we introduce Balanced Accuracy Difference, a fairness met-
ric that shares some of the motivation behind accuracy equity [1], but with an important
implementation difference to account for real-world data distributions. While accuracy eq-
uity suggests taking the difference in Standard Accuracy across the protected attribute, we
take the difference in Balanced Accuracy (our performance metric) across the protected at-
tribute. By doing so, we can account for class imbalance in the dataset, as we saw in Sec. 1.
Furthermore Balanced Accuracy Difference is important because it provides a more holistic
understanding of the Equalized Odds metric, as we now elaborate.

Consider a situation wherein after debiasing a model, the true positive rate (TPR) differ-
ence across a protected attribute increases slightly while false positive rate (FPR) difference
decreases substantially. Since Equalized Odds is an average of TPR difference and FPR

difference (Equalized Odds = % [TPR,—1 —TPR,—0| + % [FPR,—1 — FPR,—]), the resulting
Equalized Odds measure will reduce, indicating that the model is fairer than the original
model. However due to the increased TPR difference, predicting the positive outcome for
the protected attribute is actually more unfair than before debiasing! This means that for the
positive outcome, a large bias across the protected attribute still exists, which the Equalized
Odds metric does not adequately capture.

However, in this situation, the Balanced Accuracy Difference will be high as it looks
at the differences in Balanced Accuracy within each subgroup. More specifically, Balanced
Accuracy Difference can be rewritten as:

1 1
Balanced Acc. Difference(ABA) = > [TPR,—0+TNR,—] — 3 [TPR,—1 +TNR,—1] (1)
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1 1
= 3[TPRo1 + TNR—1] = 5[TPR—o+TNRoq] )
1 1
=5 [TPRu=1 — TPRa=0] + 3 [((TNRu=1 — TNRa=) 3)
1 1
= S[TPRyt ~ TPRo—o] + 5[(1 = FPRy1) — (1~ FPRy—)) &)
1 1
=5 [TPR,—1 —TPR,—] + 3 [(FPR,—o —FPR,—1)] &)
1 1
= E[TPRazl —TPR,—0) — E[(FPRa:I — FPR,—)] 6)

By Egq. 6, it is clear that given our situation where TPR difference is slightly higher than
before debiasing, and FPR difference is lower than before debiasing, Balanced Accuracy
Difference would increase, indicating that the model is behaving in a biased manner, even
though the Equalized Odds measure decreases. Therefore, a user will realize that the drop
in Equalized Odds does not tell the full story, as Balanced Accuracy Difference will indicate
that their model still encodes a bias, especially towards predicting the positive value for
one setting of the protected attribute. Hence, we advocate for using Balanced Accuracy
Difference as an additional fairness metric, along with Equalized Odds.

3 Transformer Feature Visualizations

Recall that in Figure 1 of the paper, we presented a visualization of the average Query and
Key activations for each (y,a) tuple combination, for a specific attention head and channel
of a transformer trained for the “Smiling” prediction task. In Figure 4, we provide visu-
alizations that demonstrate that the differences we notice in the query activations, and the
similarity noticed in the key activations, generalizes across different attention heads and
channels of the query and key matrices. Further, this also generalizes across different tasks.

4 Analyzing Class-Specific Alignment for CNNs

In TADeT, we propose using class-specific alignment wherein we align the distribution of
the protected attribute within the task attribute by utilizing an adversary head per-attribute
during adversarial learning. We have shown the benefits of this method for debiasing visual
transformers. In Table 1, we show that such class-specific alignment for adversarial training
improves upon previous debiasing algorithms in most settings for CNN’s as well.
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Figure 4: We show that the variance in the query matrix activations for a particular task
label, y, across a protected attribute a, generalizes across attention heads, channels, and data
settings. The Transformer Query/Key Matrix has 64 channels and 8 heads, and we have
chosen 3 random channel/head combinations from all 3 tasks to depict the generalization of
differences in activations.

Y: Wavy Hair A: Male Y: Smiling A: High Cheekbones
Method EO| ABA(%)! BA(%)t Acc(%)! EO] ABA(%)] BA(%)T Acc(%)t
Original CNN 16.71 8.08 77.99 8220 14.66 2.69 88.15 93.06
DANN [2] 14.75 7.39 77.36 81.12 15.04 1.85 87.97 93.03

DANN Class Specific 14.57 7.06 7721 80.89 14.51 3.37 88.40 93.24

Table 1: CNN Debiasing results. Y=Task. A=Protected Attribute. ~EO=Equalized Odds.
ABA=Balanced Accuracy Difference. BA=Balanced Accuracy.
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