YU ET AL.: LEARNING TEXTURE GENERATORS FROM INTERNET PHOTOS 1

Learning Texture Generators for 3D Shape
Collections from Internet Photo Sets

—Supplementary Material-

Rui Yu'2 ! University of Science and
1996yurui@gmail.com Technology of China
Yue Dong? 2Microsoft Research Asia

yuedong@microsoft.com
Pieter Peers®
ppeers@siggraph.org
Xin Tong?
xtong@microsoft.com

3 College of William & Mary

1 Implementation Details

Network structure We follow the StyleGAN [5] generator and discriminator network struc-
ture exactly. We adopt SPADE-IN [8] for conditional input, and MD-GAN [7] for stable
multiview training. The detailed network structure is summarized in Figure 1.

Proxy condition training We train the same generator and set of discriminators with the 3D
shape collection condition (i.e., shape silhouette) and proxy condition (i.e., image silhouette).
In practice, we train one batch with the 3D shape condition, followed by one batch with the
proxy condition. For each batch, the generator and discriminators are trained once.
Training parameters We almost completely reuse the StyleGAN [5] training parame-
ters. We initialize our network using He initialization [3] for both the generator and the
discriminators. To improve inter-chart consistency, the constant initial vectors for each
chart are trained separately, while being initialized to the same constant value: 1. Fur-
thermore, both generator and discriminators are trained with the Adam [6] optimizer, with
B1 =0.0,5, = 0.99. We also reuse the progressive training strategy of StyleGAN [5], by
starting the progressive training from a resolution of 8 x 8, and scale the resolution by a
factor of 2 for each step. We exactly follow the same logic as in [5] to determine the batch
sizes and training iteration for each intermediate training resolution. Additionally, we also
follow [5] and set the learning rate as 0.001 when the resolution is less than 128 x 128 and
0.0015 for the final resolution of 128 x 128. When generating low-resolution texture charts,
the corresponding images are rendered at the same resolution.

Implementation We implemented our method in Tensorflow [1]. All experimental results
in this paper are trained on a server with 4 NVidia V100 GPUs. The training performance
varies with the number of charts for the generator and the number of discriminators. For the
Cars and Shoes dataset with 6 charts and 5 discriminators, training takes approximately 90

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Karras, Laine, and Aila} 2019

Citation
Citation
{Park, Liu, Wang, and Zhu} 2019

Citation
Citation
{Li, Dong, Peers, and Tong} 2019

Citation
Citation
{Karras, Laine, and Aila} 2019

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

Citation
Citation
{Kingma and Ba} 2015

Citation
Citation
{Karras, Laine, and Aila} 2019

Citation
Citation
{Karras, Laine, and Aila} 2019

Citation
Citation
{Karras, Laine, and Aila} 2019

Citation
Citation
{Abadi, Agarwal, Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, Wicke, Yu, and Zheng} 2015

2 YU ET AL.: LEARNING TEXTURE GENERATORS FROM INTERNET PHOTOS

SPADE-IN
4%

Z-to-W

Shared for all the charts

H/W/C Texture Generator
4x4x512 8x8x512 16x16x512 32x32x512 64x64x256 128x128x128

512

Conv 3x3
SPADE-IN
Conv 3x3
SPADE-IN

SPADE-IN
Conv 3x3
SPADE-IN
Upsample
Conv 3x3
SPADE-IN
Conv 3x3
SPADE-IN
Upsample
Conv 3x3
SPADE-IN
Conv 3x3
SPADE-IN
Upsample
Conv 3x3
SPADE-IN
Upsample
Conv 3x3
SPADE-IN
Conv 3x3
SPADE-IN
Upsample
Conv 3x3
SPADE-IN
128x128x3

Conv 1x1

Conv 1x1
Conv 1x1

Chart Mask

SPADE-IN
Conv 3x3
SPADE-IN
Upsample
Conv 3x3
SPADE-IN
Conv 3x3
SPADE-IN
Upsample
Conv 3x3
SPADE-IN
Conv 3x3
SPADE-IN
Upsample
Conv 3x3
SPADE-IN
Conv 3x3
SPADE-IN
Upsample
Conv 3x3
SPADE-IN
Conv 3x3
SPADE-IN
Upsample
Conv 3x3
SPADE-IN
Conv 3x3
SPADE-IN

128x128x3

Normalization

Discriminator

6%
6,
%S,
22
8*513
«,,512

L2
51251

Hol N 8192->512

Upsample
Conv 3x3
SPADE-IN
Conv 3x3
SPADE-IN
Upsample
Conv 3x3
SPADE-IN
Conv 3x3
SPADE-IN
Upsample
Conv 3x3
SPADE-IN
Conv 3x3
SPADE-IN
Upsample
Conv 3x3
SPADE-IN
Conv 3x3
SPADE-IN
Upsample
Conv 3x3
SPADE-IN
Conv 3x3
SPADE-IN
Conv 1x1
Chart N
128x128x3
128x128x3
Render image
Conv 3x3
Conv 3x3
Average pool
Conv 3x3
Conv 3x3
Average pool
Conv 3x3
Conv 3x3
Average pool |
Conv 3x3
Conv 3x3
Average pool
Conv 3x3
Conv 3x3
Average pool %,
Conv 3x3
FC1

Zonz
o I (o
w O
228
aQa
"non

Figure 1: Network structure of the generator and discriminator.

Table 1: Ablation study results for a varying number of training shapes on the Cars dataset
(GIQA is scaled by 10?).
Number of training shapes | 552 | 100 50 10
FID | ‘ 32.59 ‘ 33.14 3446 3645

GIQA T 9910 | 9.886 9.834 9.737

hours. For the Faces dataset with only 1 chart and 3 discriminators, training takes about 50
hours.

2 Additional Results

Textures for Varying Shapes We demonstrate the rich variations in generated textures in
Figure 2 in a grid of rendered results on 3D meshes. This demonstrates that our method can
generate a wide variety of textures on different object shapes.

Texture Interpolation Like other GAN-based generation methods, ours also supports in-
terpolation of the generated texture via the latent z-vector. Figure 3 illustrates several inter-
polation examples among different generated textures.

2.1 Additional Ablation Results

Impact of Number of Training Shapes Our goal is train a texture generator for a collection
of 3D shapes. Here we evaluate how the number of 3D shapes impacts the training quality.
We train texture generators with 100,50, and 10 randomly selected 3D models from the 552
shapes of the Cars dataset. Table 1 lists the corresponding FID [4] and GIQA [2] scores
measured on textures generated over all the shapes. We found that the generated texture
quality gracefully decreases in concert with the number of training shapes.

Citation
Citation
{Heusel, Ramsauer, Unterthiner, Nessler, Klambauer, and Hochreiter} 2017

Citation
Citation
{Gu, Bao, Chen, and Wen} 2020

YU ET AL.: LEARNING TEXTURE GENERATORS FROM INTERNET PHOTOS

Figure 2: Additional rendering results of various shapes textured with our generator.

YU ET AL.: LEARNING TEXTURE GENERATORS FROM INTERNET PHOTOS

Figure 3: Interpolating textures in the latent z-vector space.

YU ET AL.: LEARNING TEXTURE GENERATORS FROM INTERNET PHOTOS 5

References

(1]

(2]

(3]

(4]

(5]

(6]

(8]

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Ra-
jat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Shuyang Gu, Jianmin Bao, Dong Chen, and Fang Wen. Giqa: Generated image quality
assessment. In ECCV, pages 369-385. Springer, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In ICCV, pages 1026—
1034, 2015.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Giinter Klam-
bauer, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a
nash equilibrium. In NIPS, 2017.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks. In CVPR, pages 4401-4410, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR,
2015.

Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. Synthesizing 3d shapes from silhouette
image collections using multi-projection generative adversarial networks. In CVPR,
pages 5535-5544, 2019.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image syn-
thesis with spatially-adaptive normalization. In CVPR, pages 2337-2346, 2019.

https://www.tensorflow.org/

