
DAMIAN KALIROFF, GUY GILBOA: PHIT-NET 1

PhIT-Net: Photo-consistent Image Transform
for Robust Illumination Invariant Matching

Supplementary Material

Damian Kaliroff
dkaliroff@technion.ac.il

Guy Gilboa
guy.gilboa@ee.technion.ac.il

Technion - Israel Institute of Technology
Haifa, Israel

In the supplementary material we provide details about the training of our model and
explain in details about the training data. We also present additional evaluation examples of
the proposed photo-consistent transform and we explain the ablation study performed during
our research which resulted in the final configuration of our model.

1 Training Details
The hyperparameters values used in our final model are given below. In addition, we explain
the implementation of the scale consistency loss.

1.1 Hyperparameters
• Training steps: Batch size=16, Epoch size=1000, Number of epochs=75.

• Adam optimizer: Momentum=0.9, Beta=0.999, Learning rate=1e-5.

1.2 Scale Consistency Loss
The scale consistency loss was defined in the paper, Eq. (11)

LSC( fa) = Dscale(F(G( fa,ρ)),G(F( fa),ρ)), (1)

where G is "Up-sample and Crop" and represents a bilinear up-sampling by a random factor
ρ ∈ (1,2] followed by a crop to the original patch size. It is calculated using an additional
instance of PhIT-Net (apart from the A, P, N instances). The loss is computed only with
respect to the anchor patches. The reason is that it is an "internal" loss, relating the patch
to itself. It is not based on patch comparison, thus there is no need to duplicate it for the
whole triplet allowing a faster training process. We remind that in the triplet network model
the training is based on various instances of the same network with shared weights. Hence,
a loss computed for one instance affects all instances.
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2 Training and Test Data

2.1 Outdoors Dataset
We train and test our main model using outdoor images from the BigTime dataset (See Figure
1). Ideally, for training we would like the scenes to be completely static with changes only
in illumination conditions. However, this is not always the case. Since the images are taken
from time-lapse videos, there are small camera movements over time. Thus, alignment is not
perfect. In addition, there are sky changes over time. Finally, the scenes are actually only
semi-static, there are changes which happen over time such as cars or people that appear or
disappear, windows that are open or shut, etc. Both the changing skies and the object changes
are not part of the illumination variations we assume for the learning process. These issues
were already raised by [3] who provide masks for regions which exhibit change not related
to illumination. We take into consideration these masks in the patch selection at training.
The camera movements are not corrected in the dataset. Thus we chose to manually select
the most stable scenes (with minimal camera movement) for training.

The training is based on square patches of 64× 64 pixels. This size is large enough to
include most relevant semi-local illumination cues. We found that smaller patches do not
contain enough details and the use of larger patches does not improve quality and consid-
erably slows down the training. The training set is composed of 240K triplets, extracted
from 600 image pairs of 10 outdoor scenes. The evaluation was done using 100 image pairs
selected from 17 additional outdoor scenes not used in training.

Figure 1: We use BigTime [3] as our outdoors dataset. For each scene there are several
images under different lighting conditions. The dataset is composed of diverse scenes.

2.2 Indoors Dataset
In addition to our main outdoors dataset, we train and evaluate our model also on a set of
indoor images. The dataset is comprised of 23 different scenes from Middlebury 2014 stereo
dataset [5]). Each scene contains two images acquired under different lighting conditions.
We train our model with patches extracted from 16 scenes (in the same manner done for
BigTime) and test it with the remaining 7 scenes.
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Figure 2: We use BigTime [3] as our outdoors dataset. For each scene there are several
images under different lighting conditions. The dataset is composed of diverse scenes.

3 Additional Examples

3.1 Visual Photo-consistency

Indoors Dataset (Middlebury). As explained before, in addition to training a model with
the BigTime dataset, we also trained and evaluated our model on an indoors dataset. In Fig. 3
we present additional examples of scenes from this dataset [5] with our transform, compared
to other methods. We also show enlarged crops of interesting regions in the images. We can
see in these examples that our representation, have the lowest differences compared to the
others. We note that the Maddern representation of the bicycle scene (left) also exhibits a
small difference between different illuminations. However, it removes significant structural
information (and hence did not perform well in the quantitative experiments, as shown in the
paper).

3.2 Patch Matching
Following Section 5.2 and Fig. 8 in the paper, we present in Fig. 4 additional match-
ing results of difficult scenarios on both datasets. We show the matching results and the
correlation-based heatmaps, according to which the algorithm selects its match.
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Figure 3: Visual comparison of invariant representation methods. For each scene, the rep-
resentation of two images under different illumination conditions is shown. The difference
(ideally zero) affirms that our representation is highly stable under illumination changes (zero
is gray). In the top of the figure we see the comparison with the full images and in the bottom
we show enlarged crops from the full images. The original crops location is marked with a
red frame in the original images (first row).
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Reference Image Target Image Original Li-Snavely[3] QATM[1] Ours

Figure 4: Examples of patch matching results. The reference and target images belong to the
same scene with different illumination. The goal is to correctly locate in the target image a
patch which is selected in the reference image (green frame). The frames marking the results
of the different algorithms are overlaid on the target image. Heatmaps of each algorithm
(right) indicate high (red) to low (blue) matching scores. (Scenes above the line – BigTime,
scenes below the line – Middlebury.)
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4 Ablation Study
In this section we show different configurations of PhIT-Net. We examine two types of vari-
ations: Loss function variations and representations with different number of channels. The
effects of these changes are quantified and visualized (Figure 5). The study is performed on
the BigTime dataset by training a new network for each variation and evaluating its perfor-
mance on the patch matching task, described in Section 5 in the paper.

4.1 Loss Function Variations
Scale Consistency Loss. In this study we set to zero the weight of the scale consistency loss,

LSC( fa) = Dscale(F(G( fa,ρ)),G(F( fa),ρ)), (2)

Removing this loss reduces the sharpness of the representation, see Figure 5, column (c).
This also affects the patch matching results. In the full model the performance is better for
smaller patches (a matching task which is harder). However, the full model exhibits slightly
worse accuracy for larger patches.
Multi-Channel Similarity Loss. In this study we set to zero the weight of the multi-channel
similarity loss,

LMC(I) = ∑
i

∑
j 6=i

(1−Dcorr(Ii, I j))
2. (3)

Without this loss the channels of the representation tend to be similar to each other or
the negative of each other (highly correlated or anti-correlated), see Figure 5, column (d).
Adding this loss promotes variability amongst the different channels and reduce information
loss.
Rotation invariance. Following the purpose of introducing the scale consistency loss, Eq.
(2), it appears natural to introduce also a rotation consistency loss. This can be formalized
as:

LRI( fa) = ‖F(H( fa,ρ))−H(F( fa),ρ)‖2
2. (4)

Where H rotates the image/representation by a random angle ρ ∈ {90,180,270} degrees.
This forces the representation to be invariant to (90 degree) rotations. Although this sounds
highly reasonable (and might be necessary for some applications), we found out that the
addition of this loss deteriorates performance. This might be explained by the fact that the
color-coding of the dominant edge-direction, produced by the full model (see Section 5 in
the paper), is direction dependant and thus it is lost here. (Figure 5, column (e)).

4.2 "K-Channel" Representation
Since our representation is unconstrained, in principle, it can be composed of an arbitrary
number of channels. We trained and tested our full model with different number of output
channels. This was achieved by changing the last convolutional layer of the network. We
observe that 3 channels yield an optimal representation (in terms of matching).
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Variation
Patch Size

32 64 128

3 channels (Full model) 0.781 0.888 0.930
1 channel 0.700 0.847 0.907
2 channels 0.711 0.862 0.907
4 channels 0.779 0.873 0.924
5 channels 0.769 0.862 0.912

No scale consistency loss 0.740 0.891 0.941
No multi-channel similarity loss 0.720 0.838 0.893

With Rotation invariance loss 0.748 0.831 0.897
Table 1: Ablation study patch matching results: score by AUC of IoU-ROC curves.

(a) (b) (c) (d) (e)

Figure 5: Variations of the representation. (a) Original image, (b) Full model representa-
tion, (c) No Scale consistency loss, (d) No Multi-channel similarity loss, (e) With Rotation
invariance loss.
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