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A Supplementary material
A.1 Proofs
In this section of the appendix, we show how current robust training methods can be derived
from our FAR objectives. The notation is kept as in Chapter 3.1 from the paper.

A.1.1 Proof of Equation (7)

Setting l = 0 in Equation (6) straightforwardly results as follows.
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A.1.2 Proof of Equation (8)

In order to derive the IG-NORM objective from Equation (5), we use IG as saliency maps,
set the distance metric ds to be the L1-norm induced distance and choose the baseline for
IG to be the unperturbed input to the network, i.e. b = x. Then, Equation (5) becomes as
follows.
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Note that IG(x, x) = 0 holds due to the completeness axiom of IG. The IG-SUM-NORM
objective can analogously be derived from Equation (6).

A.1.3 Proof of Equation (9)

The training regularization of the Align method considers the scalar product between in-
put gradients and the original input image. To derive their objective from our framework,
we have to set S to the expression given in Equation (9), with the dissimilarity ds(x,y) =
log
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⇤ 
and ST = 0. Equation (5) then becomes as follows.
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A.2 Parameters and architectures

Dataset MNIST Fashion-MNIST CIFAR-10 GTSRB Restr. Imagenet
Architecture CNN [12] CNN [12] ResNet [8] ResNet [8] ResNet [8]

AA

Attack PGD
Steps 40

Rel. stepsize 0.03

AR

Attack IFIA
Explainer Integrated Gradients with baseline 0

ds Sum-Top-K
Steps 7

Rel. stepsize 1.2/7
b 1.0
k 50 50 100 100 300

e 0.3 0.1 0.03 0.03 0.01
Number of restarts 3

Table 2: Evaluation parameters

Dataset MNIST Fashion-MNIST CIFAR-10 GTSRB Restr. Imagenet

Nat

Optimizer Adam
Epochs 50

Batch size 50 50 128 128 32
LR 0.001 0.001 0.01 0.01 0.01

Adv

Optimizer Adam
Epochs 50

Batch size 50 50 128 128 32
LR 0.0001 0.001 0.001 0.001 0.001

Adv. ratio 0.7

Align

Optimizer Adam
Epochs 50

Batch size 50 50 - - 32
LR 0.0001 0.0001 - - 0.0001
l 0.5 0.5 - - 0.5

AAT

Optimizer Adam
Epochs 50

Batch size 50 50 128 128 32
LR 0.0001 0.0001 0.0001 0.0001 0.0001
l 0.5 1.0 2.0 0.5 1.5

AdvAAT

Optimizer Adam
Epochs 50

Batch size 50 50 128 128 32
LR 0.0001 0.0001 0.0001 0.0001 0.0001
l 0.5 0.5 0.5 0.2 0.5

Table 3: Training parameters

We conduct experiments on five vision datasets (MNIST, Fashion-MNIST, CIFAR-10,
GTSRB and Restricted Imagenet) to compare our attributional robustness method to state of
the art algorithms. Each model is implemented in PyTorch v1.3.1 and is trained distributedly
on six NVIDIA Tesla V100 GPUs with the PyTorch Distributed Data Parallel wrapper. We
fix all seeds to 42. Table 2 contains the evaluation parameters of our experiments, Table 3
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the training parameters. We finetune the natural model to train our robust methods. If we do
not mention a specific parameter, it is set to the default value in PyTorch v1.3.1. Moreover,
the parameters values of IFIA during training are kept as the values during evaluation.

A.3 Initialization methods

Init. Model NA AA IN CO

PTD
Nat 99.1% 0.0% 0.23 0.20
Adv 99.0% 93.9% 0.35 0.05
AAT 98.9% 8.7% 0.39 0.28

CUST
Nat 98.8% 0.0% 0.09 0.03
Adv 98.8% 88.9% 0.21 0.02
AAT 98.6% 8.7% 0.30 0.18

UNI
Nat 99.2% 0.0% 0.18 0.13
Adv 98.9% 93.6% 0.40 0.08
AAT 98.7% 5.5% 0.33 0.24

HU
Nat 99.2% 0.0% 0.13 0.08
Adv 99.0% 93.6% 0.12 0.01
AAT 98.3% 7.2% 0.38 0.24

HN
Nat 99.2% 0.0% 0.10 0.06
Adv 99.1% 93.6% 0.11 0.01
AAT 98.5% 4.3% 0.36 0.24

GU
Nat 99.2% 0.0% 0.27 0.19
Adv 99.0% 93.6% 0.21 0.45
AAT 98.8% 6.4% 0.38 0.27

GN
Nat 99.2% 0.0% 0.26 0.20
Adv 99.0% 94.0% 0.37 0.55
AAT 98.7% 9.1% 0.39 0.28

Table 4: Estimated attributional robustness (IN and CO) for several differ-
ent initialization methods (Init.). The results are reported for models
trained naturally (Nat), adversarially (Adv) as well as with our AAT objec-
tive on MNIST. The natural and adversarial accuracy is given in the NA and
AA columns. While accuracies of the models are similar, their estimated
attributional robustness varies significantly throughout the initializations.

We use seven different initial-
ization methods for address-
ing the dependency of attribu-
tional robustness on the ini-
tialization. These are detailed
in the next paragraphs. If a
parameter is not mentioned, it
is kept as the default value de-
fined in PyTorch. The train-
ing setup is kept constant for
each initialization, and cor-
responds to the setup men-
tioned in the previous section
for the different models.
PTD. Default PyTorch initial-
ization for linear and convo-
lutional layers. This is the
He uniform initialization with
a =

p
5 for the weights and

a uniform initialization with
bounds ±b = ± 1/

p
fan_in

for the bias terms.
CUST. Custom initialization
method. Weights are initial-
ized utilizing a zero-centered
normal distribution with a
standard deviation of 0.1, and
biases are initialized to be 0.1,
both for linear and convolu-
tional layers.
UNI. Uniform initialization method. Weights and biases are initialized utilizing a uniform
distribution with bounds ±b = ±0.1 for all layers.
HU. He uniform initialization method. Weights are initialized utilizing the default PyTorch
He uniform initialization, biases are set to zero.
HN. He uniform initialization method. Weights are initialized utilizing the default PyTorch
He normal initialization, biases are set to zero.
GU. Glorot uniform initialization method. Weights are initialized utilizing the default Py-
Torch Glorot uniform initialization, biases are set to zero.
GN. Glorot normal initialization method. Weights are initialized utilizing the default Py-
Torch Glorot normal initialization, biases are set to zero.


