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A Maintaining Spatial Correspondence over Batch
Normalization

If faced with disturbance of layer-wise means and variances distribution introduced by inter-
polation when images for inference are rotated, batch normalization [1] may not be able
to strictly preserve the rotational invariance of spatial correspondence. Note that batch
normalization uses running means and variances of intermediate representations retrieved
from upright images during training in order to normalize the representations when mak-
ing inferences. Specifically, given each dimension of a set of vertices representation H̄(l) =

(0H̄(l) · · · c′(l)H̄(l)) =W (l)
1 Ĥ(l) of a rotated image Rθ , normalization for BN(H̄(l)) during in-

ference is conducted as

kH̄(l)−E[kV̄(l)]√
Var[kV̄(l)]+ ε

where E[·] and Var[·] denote expectation and variance respectively, and ε is a small
constant to prevent zero division. Accordingly, E[kH̄(l)] and Var[kH̄(l)] must be equal to
E[kV̄(l)] and Var[kV̄(l)] in order to strictly follow the philosophy of batch normalization and
to preserve the RISC.

Unfortunately, contrary to models trained with data augmentation, which are provided
with kĤ(l) during training, models trained in our constrained problem definition are not
provided with such information.

However, we have Ĥ(l)
(u,v) ≈ V̂

(l)
(w,h) from the analysis of SMP, from which we can assume

that E[kH̄(l)]≈ E[kV̄(l)] and Var[kH̄(l)]≈Var[kV̄(l)].
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Still, the lingering errors occurring from the approximations can be ameliorated by us-
ing means and variances extracted from whole test data, or practically mini-batch statistics
during inference. Improvement of classification performance of our model when making
inferences with test mini-batch statistics is reported in Table 1.

Table 1: Classification accuracies of SWN-GCN (w/ C.F) when using running statis-
tics(means and variances) versus using test mini-batch statistics for batch normalizations
during inference.

MNIST CIFAR-10
RUNNING STAT. 90.37 % 50.31%

TEST MINI-BATCH STAT. 91.78 % 50.51%

In fact, improvement in classification accuracy is more noticeable in R-MNIST. We may
accuse the nature of grayscale, hand-written digit images for such observation. Interpolated
values on borderlines of pixels in an MNIST image are likely to be retrieved from two far-
ended values, white and black. This is quite an extreme case for interpolation compared to
softer difference of pixels on borderlines of the objects in CIFAR-10 images.

Note that the aforementioned problem caused by unseen distribution of data introduced
by interpolation applies to all baseline models with batch normalizations. Thus, all the re-
ported performances on the baselines used test mini-batch for batch normalizations when
making inference.

B Implementation Details

We can easily implement SMP in spatial domain by letting every vertex receive messages
using depth-wise convolution of 3×3 kernels whose adjacent weights in the kernels fixed as
1
9 , leaving the parameter at the center of the kernel to be trainable, which corresponds to β (l).
SWP is implemented with pointwise convolution, or convolution with kernel size of 1× 1.
Specifically, we need c′(l) number of 1×1× c(l) sized convolution kernel to implement first
shared-weight propagation by W (l)

1 , and need c(l+1) number of 1×1×c′(l) sized convolution
kernel to implement second shared-weight propagation by W (l)

2 . The propagating dimensions
of vertices for every layer is summarized in Table 2.

Note that the order of SMP and SWP is switched deliberately to construct layers of WN-
GCN model for CIFAR-10, as the first SMP layer over the input images yields an unwanted
blurring effect.

C Classification Preservation Rate over Rotations

Apart from direct quantification of rotational invariance via relative L2 norm of rotational
variance (δ θ

L2
) and absolute cosine similarity of rotational invariance (δ θ

cos), it is also impor-
tant to observe how consistently the linear classifier can make inferences on an image over
rotations. For that matter, we suggest Class Preservation Rate over Rotations(CPRR), which
measures how much of the correctly classified images that are rotated by θ degrees are still
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Table 2: SWN-GCN model configuration

l c(l) c′(l) c(l+1)

0 3 64 64
1 64 64 64
2 64 128 128

3,4 128 128 128
5 128 256 256

6,7,8 256 256 256
9 256 512 512

10,11,12 512 512 512

correctly classified when they are rotated by θ ′ degrees. That is,

CPRRθ ′
θ :=

∑{correct[(SWN-GCN(Rθ ′)]∩ correct[(SWN-GCN(Rθ )]}
∑{correct[(SWN-GCN(Rθ )]}

, (1)

where correct() returns a list of images correctly classified by a trained linear classifier,
and ∑ counts the total number of images of the list, so that we can measure the proportion of
correctly classified images that are also correctly classified when rotated in different angles.

We have measured CPRRs over SWN-GCN along the other two baselines, [2] and [3],
on CIFAR-10 dataset, and the result is presented in Table 3. Again, the networks as well as
classifiers are trained with upright images only.

Table 3: Comparison of CPRRs on CIFAR-10

CPRR30
0 ↑ CPRR60

0 ↑ CPRR60
30 ↑

TIGRANET [2] 0.916 0.881 0.901
E(2)-CNN C-8 [3] 0.607 0.492 0.652

SWN-GCN (OURS) 0.921 0.876 0.891

CPRR values of TIGraNet and SWN-GCN are substantially higher than E(2)-CNN for all
angle differences. However, despite the similar CPRRs between SWN-GCN and TIGraNet,
SWN-GCN outperforms TIGraNet on classification accuracies for all angles by large mar-
gins as are reported in the main paper.

Please note that despite CPRR being a good measure of "preservative classifiability" of
invariant representations, CPRR cannot be a strict measure of rotational invariance because
the classification boundary can still allow rooms for representations that are rotation-varying
within the bound.

D Ablating the Components of Deep Network
Ability of SWN-GCN to construct deeper representation over spectral graph convolution-
based invariant representation learning [2] is one of the main contributions of the work. We
ablated over components of our network that are typically employed to construct deeper
networks: a) network size and b) batch normalization, in order to observe the behavior over
each of their presence.
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We controlled the depth and size of the ablating networks by the number of training
parameters in SMP and SWP, while configuring the classifiers to each of the network’s out-
put channel accordingly, since the classifier is not the focus of our ablation. The result is
displayed in Table 4.

Table 4: Ablations over network size and batch normalization. Values are classifcation ac-
curacies over rotated CIFAR-10. All models are trained with upright images. S refers to the
number of parameters corresponding to the configuration in Table 2, B.N is Batch Normal-
ization w/ (with) and w.o/ (without).

NETOWRK SIZE 0.3S S 1.5S
W/ B.N 40.2% 50.4% 50.7%

W.O/ B.N 36.9% 45.5% 45.6%

With batch normalizations, deeper networks could yield better performance yet the in-
crement of network size yields less increment in performance as the network size increases.
However, deeper network yields larger performance discrepancies between those with and
without batch normalizations. We conjecture that the effect of internal covariance shift
problem is more pervasive for deeper network (a widely known problem targeted by batch-
normalizations).
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