SHUCHANG LYU, QI ZHAO: MAKE BASELINE MODEL STRONGER 1

—Supplementary Material—

Make Baseline Model Stronger: Embedded
Knowledge Distillation in Weight-Sharing
Based Ensemble Network

Shuchang Lyu Department of Electronics and
lyushuchang@buaa.edu.cn Information Engineering, Beihang
Qi Zhao University

zhaogi@buaa.edu.cn Beijing, China

Yujing Ma

zy1902407@buaa.edu.cn

Lijiang Chen

chenlijiang@buaa.edu.cn

Supplementary material provides details that could not be included in the paper submis-
sion due to page limitations. Sec. 1 provides details on the principle of hyper-parameter
adjusting. Sec. 2 describes a more general branch points setting strategy, which shows the
flexibility of EKD-FWSNet. Sec. 3 shows the comparison and analysis of computation cost
during training. Sec. 4 shows the visualization and analysis, which can prove the inter-
pretability of our method.

1 Hyper-Parameter Adjusting Principle

In this paper, we propose simple yet efficient optimizing method. Only two scalars are served
as hyper-parameters, where w and @ are respectively applied to adjust the proportions of KL
distillation loss and MSE ensemble-attention loss. For different tasks, we adopt different
hyper-parameter adjusting strategies to make model training work well. Tab. 1 shows the
configuration of these two scalars on different tasks. The principle of adjusting the hyper-
parameter is listed as follows. 1) We tend to use higher value of w for more complex task
(CIFAR100, tiny-ImageNet). Because the pattern of class probabilities is more complex
when the number of categories is large. 2) We set smaller & when applying MSE loss on
large-scale feature maps to avoid abnormal values caused by large loss. 3) When more
branches are added, we may decrease the factor of cross-entropy loss to avoid exploding
gradients. Fortunately, it rarely happens in our proposed models. 4) For ResNet [2] series
and EfficientNet [6] series, we use a fix set of hyper-parameter shown in Tab. 1, which shows
the robustness and less training sensitivity of our proposed EKD-FWSNet.
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Datasets
Models
CIFAR-10 CIFAR-100 tiny-ImageNet
ResNet-20/32/44/56 (15, 1 (60, 1) -
ResNet-18/34 - (100, 1) (100, 0.1)
EfficientNet-b0/b2/b4 - (100, 1) (100, 0.1)

Table 1: The configuration of hyper-parameter on different datasets. We denote the two
hyper-parameter in format of (w, o)
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Figure 1: An architecture of six-branch EKD-FWSNet. The main branch is ResNet18/34,
we set five branch points, where “bp3” and “bp5” are respectively set inside “layer3” and
“layer4” of main branch.

2 Block-Wise Branch Point Setting in EKD-FWSNet

As mentioned in paper, only setting branch points between layers is not flexible. In this
section, we introduce block-wise (i.e. inside layers) branch point setting. Designing in
this way, EKD-FWSNet will have more forward paths. Fig. 1 shows a six-forward paths
(six-branch) EKD-FWSNet respectively using ResNet18/34 as main branches. We show the
classification accuracy in Tab. 2.

Even though six-branch EKD-FWSNet has little superiority compared to the result of
four-forward paths EKD-FWSNet in Tab.3 of main paper, the block-wise branch point set-
ting strategy makes EKD-FWSNet more flexible. Compared to previous works [1, 7], EKD-
FWSNet can flexibly extend to an end-to-end ensemble network with lager number of branches
using little trainable parameters.
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Models Branch-num  Err-rate
ResNet-18@layerl EKD-FWSNet 4 20.49
ResNet-18@layer] EKD-FWSNet 6 20.63
ResNet-34@layer] EKD-FWSNet 4 19.94
ResNet-34@layer] EKD-FWSNet 6 19.91

Table 2: Classification results of six-forward paths EKD-FWSNet. We use ResNet-18/34
as baseline network and evaluate on CIFAR-100. In EKD-FWSNet (Fig.1), we set five split
points, two of which are block-wise branch points. The first split point is at layer1.

3 Comparison and Analysis of Computation Cost in
Training Phase

As Mentioned in main paper, some recent novel works [3, 7, 8] show the power of “student-
classmate” KD based ensemble network (Fig.1 middle of main paper). However, with the
increase of classmate branches, the training burden increase obviously, which will compli-
cate training process. Comparing with those methods, our proposed method is more compact
and flexible. To intuitively show the computation cost in training phase, we compare the
training FLOPs in Tab. 3.

To fairly compare the computation cost of our method with previous KD and ensemble
learning based methods, we first calculate the training parameters and FLOPs during training
phase of individual baseline model. Then we carefully reimplement the models [3, 7, 8] and
calculate their training cost. As shown in Tab. 3, DML [8] uses a two-branch (two ResNet-
32) structure. Therefore, the training parameters and the training FLOPs are approximately
the two times of baseline model. If more branches are involved, parameters and FLOPs will
multiply. OEM [7] combines several branches with different size. However, each branch is
fed with high-resolution feature maps, which also costs a lot both on parameters and FLOPs.
KD-ONE [3] first utilizes low-level layers as weight-sharing blocks and then constructs mul-
tiple branches using separate high-level layers. Comparing with DML and OEM, this design
largely lowers the training FLOPs.

Compared to DML and OEM, EKD-FWSNet can train a baseline model better with less
training parameters and FLOPs. Compared to three-branch KD-ONE, EKD-FWSNet uses
less parameters but more FLOPs. Then, we increase the branch number and make further
comparison. When adding more branches, KD-ONE will introduce more high-level layers.
Since high-level layers contain large group of parameters, the training parameters and FLOPs
of six-branch KD-ONE rapidly increase, especially training parameters. To construct a six-
branch EKD-FWSNet, we adopt block-wise branch point setting strategy (Sec.2, Fig. 1).
From Tab.3, it is clear that EKD-FWSNet has no training parameters increase. From three-
branch to six-branch structure, EKD-FWSNet has less training FLOPs increase (2.73G vs
3.31G).

In summary, the huge superiority of EKD-FWSNet is low training parameter cost. An-
other huge superiority of EKD-FWSNet is flexiblity. when more branches are constructed,
no extra training parameters are involved and the computation cost increase in a slow way.
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Methods Params FLOPs Branch-num Err-rate
ResNet-32 (baseline) 0.46M  3.40G 1 30.73
OEM [7] 095M  7.02G 5 29.03
DML [8] 093M 681G 2 28.90
KD-ONE [3] 1.17M  5.61G 3 26.61
KD-ONE [3] 222M  8.92G 6 -
EKD-FWSNet 0.90M 6.71G 3 26.46
EKD-FWSNet 0.90M 9.44G 6 26.22

Table 3: Comparison and analysis of computation cost in training phase. Parameters and
FLOPs are calculated during training forward process with standard input size 224 x224. We
use ResNet-32 as baseline network and compare the classification performance on CIFAR-
100. Additionally, we reimplement the models of OEM [7], DML [8] and KD-ONE [3] to
calculate the computation cost.
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Figure 3: The attention map visualiza-

Figure 2: Visualization results of log- . - using Grad-CAM method. We se-
its on CIFAR-10 with T-SNE. We select o\ esNet-18 as baseline network. In

ResNet-20 as baseline network. “EKD-
ensemble” indicates the ensemble teacher
logits of EKD-FWSNet

the map, the warmer the color, the higher
region attention.

4 Visualization and Analysis

Class probability visualization with T-SNE. To intuitively show the patterns of predictions,
we apply T-SNE [4] on the final logits of networks. In Fig. 2, we compare the performance
through the scatter plot generated by network training individually and training with EKD-
FWSNet. In scatter plots of EKD-FWSNet, the clusters of each class are tighter (smaller
intra-class distance) and distance between clusters are larger (larger inter-class distance).
All in all, Fig. 2 shows the effectiveness and interpretability of our proposed EKD-FWSNet.

Attention region visualization with Grad-CAM. To show the performance on feature
representation of our proposed EKD-FWSNet, we adopt the Grad-CAM [5] to visualize
attention region of each layer’s feature map. As shown in Fig. 3, network training with EKD-
FWSNet can obtain better attention on different layers. Specifically, EKD-FWSNet training
networks can generate less-noise low-level feature maps and richer-information high-level
feature maps.
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