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Abstract

This document provides additional information regarding the evaluation metrics and
experiments. The four evaluation metrics adopted in the experiments are detailed in
this document. Besides, we show more qualitative results to further demonstrate the
effectiveness of the proposed SA-Net.

1 Metrics

In this work, we evaluate all 28 benchmark models and our SA-Net with four widely used
SOD metrics with respect to the ground-truth binary mask and predicted saliency map. The
F-Measure (Fp) [1] and mean absolute error (MAE) [6] focus on the local (per-pixel) match
between ground truth and prediction, while S-Measure (Sy) [3] pays attention to the ob-
ject structure similarities. Besides, E-Measure (Ey) [4] considers both the local and global
information.
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e MAE computes the mean absolute error between the ground truth G € {0,1} and a nor-
malized predicted saliency map P € [0, 1], i.e

W H
WxHZZ‘G P(i,j) |, M

i=1j=1

MAE =

where H and W denotes height and width, respectively.
e F-Measure gives a single value (Fj) which considers both the Precision and Recall, thus
being defined as:
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where M denotes a binary mask converted from a predicted saliency map and G is the ground
truth. Multiple M are computed by taking different thresholds of [0,255] on the saliency map.
Note that the 82 is set to 0.3 according to [1]. Notably, the adaptive F-Measure-based results
reported in our manuscript are calculated by applying an adaptive threshold algorithm [2].

e S-Measure evaluates the structure similarities between salient objects in ground-truth fore-
ground maps and predicted saliency maps:

S=axS,+(1—a) xS,. 4)

where S, and S, denote the object-/region-based structure similarities, respectively. a € [0, 1]
is set as 0.5 so that equal weights are assigned to both the object-level and region-level
assessments [3].

e E-Measure is a cognitive vision-inspired metric to evaluate both the local and global sim-
ilarities between two binary maps. Specifically, it is defined as:

Ey= Z Z ¢ (P(x,y),G(x,y)), Q)

where ¢ represents the enhanced alignment matrix [4]. Similar to F, adaptive E-Measure is
adopted for the evaluation in our manuscript.

2 Qualitative Results

Comparison of Ablation Models. Due to the page limit, we only show partial visual results
of ablation studies in our manuscript. To further illustrate the benefit of each key component
in our SA-Net, we show complete qualitative results for all six ablation models in Figure 1.
As can be observed, each component improves the quality of predicted saliency maps and
contributes to the superior performance of SA-Net.

Comparison with State-of-the-Arts. To further demonstrate the effectiveness of our SA-
Net, we show extensive visual results of our method as well as the competing models upon
the three benchmark datasets (Figure 2 to 5). Overall, our proposed SA-Net depicts fine
object structures and possesses less false positive and false negative, thus giving predictions
closest to ground truths.
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Figure 1: Visual results of ablation studies.
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Figure 2: Visual comparison of our SA-Net and state-of-the-art SOD models upon DUT-LF
[7]. % indicates tradition methods.
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Figure 3: Visual comparison of our SA-Net and state-of-the-art SOD models upon DUT-LF
[7]. % indicates tradition methods.
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Figure 4: Visual comparison of our SA-Net and state-of-the-art SOD models upon HFUT
[8]. * indicates tradition methods.
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Figure 5: Visual comparison of our SA-Net and state-of-the-art SOD models upon LFSD [5].
* indicates tradition methods.
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