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Feature and Label Embedding Spaces
Matter in Addressing Image Classifier Bias

Supplementary material

Bias removal. Once the proposed model has been trained, we compute A in Eq. 2 from
the training set of CIFAR-10S. When performing a principal component analysis on A, we
observe that there remains a main direction explaining the variance (Figure 4(a)). Though,
compared with the baseline model (Figure 2(a)), our model with protected embeddings re-
duces the skewness from 2.63 to 1.87. This effect is even more noticeable after the bias
removal (Figure 4(b)). Indeed, the skewness drops to 0.54 and there is no longer a main
direction of variance. The bias removal operation reduces the presence of the bias in the
feature space.
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Figure 4: Bias removal in the feature space effect on the explained variance of the principal
components of A on CIFAR-10S. After the removal of the bias direction, there is no longer
a main direction of variance as illustrated by a reduced skewness.

Samples from datasets. Figure 5 shows examples of the color bias in CIFAR-10S [50]
while Figure 6 shows examples of the gender bias in CelebA [32].
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Figure 5: CIFAR-10S samples, where five

classes are skewed towards color images and (99.8%) (88.3%) (88.1 (86.3%) (19.5%)

five other classes are skewed towards gray Figure 6: CelebA samples of the top-5 at-

images in the training set. tributes skewed towards “female” and “male”
genders in the training set.
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