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Figure S1: The architecture of Recurrence-in-Recurrence Network and the components

S1 Introduction

In the main manuscript, we proposed recurrence-in-recurrence networks (RIRN) that serve as
add-on modules for RNN-based video deblurring methods. In this supplementary material,
we provide the experimental details and extensive quantitative and qualitative comparisons

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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of the deblurred results. In Section S2, the models used in the experiments in the main
manuscript are described with the specifics. In Section S3, the design choice of IRM and
ATB architecture for RIRN is justified by swapping each module with the other architecture.
In Section S4, the effect of IRM and ATB are elaborated by applying each modules and
both of them to the baseline architectures. In Section S5, the deblurred results are visually
compared in the attached videos (Sec S5.1) and the captured frames (Sec S5.2).

S2 Model specification

In Figure S1a, the overview of our RIRN architecture is shown. The Inner-Recurrence Mod-
ule (IRM) and Adaptive Temporal Blending (ATB) improves the baseline RNNs in terms of
restoration accuracy. In the experimental comparisons, we used the state-of-the-art video de-
blurring methods, IFI-RNN [6], STRCNN [3], RDBN [7]. Also, we conducted experiments
with LSTM [2] and GRU [1]-based models that are meant to control the RNN cell memory
with gates to show our IRM and ATB could supplement the memory updating scheme.

S2.1 Encoder Architecture

For IFI-RNN [6], we used the simplest model, C1H1 with a single cell without the iterative
operations. The number of feature channels equal to the original model. In STRCNN [3],
we removed the DTB module to compare the effect with our ATB. We built the RDBN
architecture by adapting the ESTRNN [7]. We removed the GSA module that fuses the
saved features from multiple time steps to compare the effect in memory control with our
RIRN. We used the B;5Cgp model using 15 RDB blocks with 80 feature channels.

In constructing the LSTM and GRU models for video deblurring, we modified IFI-
RNN (C1H1). As IFI-RNN is a type of RNN without a gating function, we add the cor-
responding gates on IFI-RNN to construct LSTM and GRU. We employ LSTM and GRU
model by adapting IFI-RNN architecture. The constructed architectures are shown in Fig-
ure S2. The detailed layer specifics are described in Table S1 for LSTM and Table S2 for
GRU.

S2.2 IRM architecture

IRM architecture is shown in Figure S1b. The two input states are concatenated and then
processed by convolutional layers and ResBlocks. The detailed specifics are shown in Ta-
ble S3.
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S2.3 ATB architecture

ATB generates the attention map for the input features and outputs the weighted sum of
the features from the attention. The concatenated inputs are processed by a convolutional
layer and then are split in half by the channel dimension. The following layers for each split
branch generates the attention map that is to be multiplied with the corresponding input. The
attended features are added to output the blended feature. The detailed specifics are shown
in Table S4.
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Table S1: LSTM architecture details. &, w are the number of height and width.

Module ‘ layer ‘ kernel ‘ stride ‘ output shape
B; input - - 3xhxw
My input - - 20x h/4 xw/4
conv 5x5 1 20x hxw
conv | 5x5 2 40 % h/2 x w/2
conv 5%x5 2 60 x h/4xw/4
concat - - 80 x h/4xw/4
conv 5%x5 1 80 x /4 xw/4
split - - (20 x h/4xw/4) x4
Forget gate ‘ sigmoid ‘ - ‘ - ‘ 20X h/4 xw/4
Inputgate | tahn | - | - |  20xh/4xw/4
Output gate | sigmoid | - | - | 20X h/4 x w/4
Resetgate | sigmoid | - | - | 20xh/4xw/4
fi output - - 60 x h/4 xw/4
y output - - 20x h/4 xw/4

Table S2: GRU architecture details. &, w are the number of height and width.

Module ‘ layer ‘ kernel ‘ stride ‘ output shape
B, input - - 3xhxw
hey input - - 20 x /4 x w/4
conv 5x5 1 20x hxw
conv 5x5 2 40X h/2xw/2
conv 5%x5 2 60 x h/4 xw/4
concat - - 80 x h/4 xw/4
conv 5%x5 1 80 x h/4 xw/4
split - < | 60 % h/4xw/420 x h/4x w/4
Update gate sigmoid - - ‘ (60 x h/4 x w/4)
Reset gate sigmoid - - 20x h/4 x w/4
concat - - 80 x /4 xw/4
Candidate conv 5x5 1 60 x h/4 xw/4
Candidate tanh - - 60 x h/4 xw/4
conv 3x3 1 20X h/4 x w/4
ResBlock | 3x3 1 20X h/4 x w/4
conv 3x3 1 20x h/4 x w/4
fi output - - 60 x h/4xw/4
hy output - - 20X h/4 xw/4
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Table S3: IRM architecture details. c, i, w are the number of channels, height, and width. ¢
varies by the baseline model architecture.

Module ‘ layer ‘ kernel ‘ stride ‘ output shape
hy input - - cXhxw
hy_q input - - cXhxw

concat - - 2c X hxw

conv 3x3 1 2c X hxw

conv 3x3 1 2cxhxw

conv 3x3 1 2c X hxw

ResBlock 3x3 1 2c X hxw

conv 3x3 1 cxXhxw

ResBlock 3x3 1 cxXhxw

Be ] ouput | - | - | exhxw

Table S4: ATB architecture details. c, i, w are the number of channels, height, and width. ¢
varies by the baseline model architecture.

Module ‘ layer ‘ kernel ‘ stride ‘ output shape

fi input - - cXhxw
ficr input - - cxXhxw
concat - - 2c X hxw
conv 3x3 1 2c X hxw

split - - cxXhxw,exhxw
conv 3x3 1 cxhxw
ReLU - - cXhxw
Upper path conv 1x1 1 cXhxw
sigmoid - - cxXhxw
conv 3x3 1 cXhxw
ReLU - - cxhxw
Lowerpath | oy | 1x1 | 1 exhxw
sigmoid - - cXhxw
wy - - - cxXhxw
Wr—1 - - - cxXhxw
fi output - - cxhxw
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Table S5: Application of IRM and ATB on existing RNN architectures

Architecture GOPRO REDS
PSNR  SSIM PSNR  SSIM
IFI-RNN (C1H]1) [6] 28.30  0.8668 | 30.01 0.8762

IFI-RNN + ATB + ATB | 28.65 0.8812 | 30.75  0.8822
IFI-RNN + IRM +IRM 28.76  0.8874 | 30.95  0.8900
IFI-RNN + IRM + ATB | 29.14 0.8894 | 31.08  0.8905

Table S6: Application of IRM and ATB on existing RNN architectures

Architecture GOPRO REDS

PSNR  SSIM PSNR  SSIM
IFI-RNN (C1H1) [6] 28.30  0.8668 | 30.01 0.8762
IFI-RNN + ATB 28.65 0.8779 | 30.61  0.8800
IFI-RNN + IRM 28.88  0.8805 30.75  0.8845
IFI-RNN + IRM + ATB 29.14 0.8894 | 31.08 0.8905
STRCNN [3] 28.72  0.8460 | 30.23  0.8708
STRCNN + ATB 28.75 0.8554 | 3043 0.8752
STRCNN + IRM 28.82 0.8602 | 30.66 0.8829
STRCNN + IRM + ATB | 28.87 0.8781 | 30.76  0.8902
RDBN [7] 29.82 09043 | 32.29 0.9222
RDBN + ATB 29.87 09048 | 32.55 0.9221
RDBN + IRM 29.96  0.9086 | 32.44  0.9308
RDBN + IRM + ATB 30.17 09120 | 32.71  0.9322
GRU 25.11 0.7890 | 26.69  0.7956
GRU + ATB 2549  0.7961 26.77  0.8043
GRU + IRM 26.03 08179 | 28.52  0.8338
GRU + IRM + ATB 26.36  0.8217 | 28.60  0.8428
LSTM 2522  0.7948 | 26.87 0.8046
LSTM + ATB 25.33  0.8011 27.69  0.8198
LSTM + IRM 26.97 0.8291 28.75  0.8335
LSTM + IRM + ATB 27.24  0.8400 | 29.12 0.8584

S3 Design Ablation of RIRN

In RIRN, we proposed IRM to handle the long-range dependency of hidden states and ATB
to improve the temporal blending of image features. To validate the validity of the designs of
each modules for the corresponding temporal dependency range, we conduct ablation study
in Table S5 by replacing each module with the other module. Compared with the cases
the same sub-architecture is used to handle both the relation among the hidden states and
among the image features by either the ATB or the IRM, our proposed RIRN showed the
best restoration quality.

S4 Quantitative Comparison

In Table S6, we show the detailed comparison of video deblurring results by showing the
effect of ATB, IRM. Each module consistently shows the improvement over the baseline
models. The best performance is achieved when both the modules are used.
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S5  Visual Comparison of Deblurred Videos

S5.1 Video Results

We present the videos showing the deblurred results with the blurry input in the supplemen-
tary videos. Please see the attached videos for the comprehensive comparison.

GOPRO .mp4:

Comparison between blur GOPRO video and deblurred video with RDBN+RIRN.

REDS . mp4:

Comparison between blur REDS video and deblurred video with RDBN+RIRN.
REAL.mp4:

Comparison between REAL blur video and deblurred video with STRCNN+RIRN.

S5.2  Captured Results

More visual comparisons are elaborated in the below figures by showing the results on GO-
PRO [4], REDS [5] datasets and on the real videos we collected. In Figure S3, S4, and S5,
LSTM and LSTM+RIRN are compared. In Figure S6, S7, and S8, GRU and GRU+RIRN
are compared. In Figure S9, S10, and S11, STRCNN and STRCNN+RIRN are compared.
In Figure S12, S13, and S14, IFI-RNN (C1H1) and IFI-RNN (C1H1)+RIRN are compared.
In Figure S15, S16, and S17, RDBN and RDBN+RIRN are compared. RIRN consistently
improves the visual quality of the deblurred videos.
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(c) LSTM (d) LSTM+RIRN
(a) LSTM (b) LSTM+RIRN (e) LSTM () LSTM+RIRN

Figure S3: Visual comparison between LSTM and LSTM+RIRN on GOPRO dataset.
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Figure S4: Visual comparison between LSTM and LSTM+RIRN on REDS dataset.
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Figure S5: Visual comparison between LSTM and LSTM+RIRN on a real blurry video.



PARK, NAH, LEE: RECURRENCE-IN-RECURRENCE NETWORKS

(e) GRU (f) GRU+RIRN

(a) GRU (b) GRU+RIRN

Figure S6: Visual comparison between GRU and GRU+RIRN on GOPRO dataset.

(¢) GRU (d) GRU+RIRN

(e) GRU (f) GRU+RIRN

(a) GRU (b) GRU+RIRN

Figure S7: Visual comparison between GRU and GRU+RIRN on REDS dataset.
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Figure S8: Visual comparison between GRU and GRU+RIRN on a real blurry video.
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(c) STRCNN (d) STRCNN+RIRN
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Figure S9: Visual comparison between STRCNN and STRCNN+RIRN on GOPRO dataset.
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Figure S10: Visual comparison between STRCNN and STRCNN+RIRN on REDS dataset.
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Figure S11: Visual comparison between STRCNN and STRCNN+RIRN on a real blurry
video.
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(c) IF.RNN (d) IFI-RNN+RIRN

(e) IFI-RNN (f) IFI-RNN+RIRN

(a) IFI.-RNN (b) IF-RNN+RIRN

Figure S12: Visual comparison between IFI-RNN and IFI-RNN+RIRN on GOPRO dataset.

(c) IFI.RNN (d) IFI-RNN+RIRN

(e) IFI.RNN (f) IFI-RNN+RIRN

(a) IFI-RNN (b) IF-RNN+RIRN

Figure S13: Visual comparison between IFI-RNN and IFI-RNN+RIRN on REDS dataset.

(c) IFI.RNN (d) IFI-RNN+RIRN

(a) IFLRNN (b) IF-RNN+RIRN (¢) IFLRNN (f) IF.RNN+RIRN

Figure S14: Visual comparison between IFI-RNN and IFI-RNN+RIRN on a real blurry
video.
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(c) RDBN (d) RDBN+RIRN
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Figure S15: Visual comparison between RDBN and RDBN+RIRN on GOPRO dataset.
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(b) RDBN+RIRN

Figure S16: Visual comparison between RDBN and RDBN+RIRN on REDS dataset.
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Figure S17: Visual comparison between RDBN and RDBN+RIRN on a real blurry video.
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