
ZHENG, REN, SUN, WANG, QI: JOINT-AWARE REGRESSION 1

Joint-Aware Regression: Rethinking
Regressin-Based Method for 3D Hand Pose
Estimation
Xiaozheng Zheng12

zhengxiaozheng@bupt.edu.cn

Pengfei Ren12

rpf@bupt.edu.cn

Haifeng Sun12

hfsun@bupt.edu.cn

Jingyu Wang12

wangjingyu@bupt.edu.cn

Qi Qi12

qiqi8266@bupt.edu.cn

Jianxin Liao12

liaojx@bupt.edu.cn

1 State Key Laboratory of Networking
and Switching Technology
Beijing University of Posts and
Telecommunications
Beijing, China

2 EBUPT Information Technology Co.,
Ltd.
Beijing, China

Abstract

Our supplementary materials are organized as follows. Section 1 introduces the ex-
periments of applying JAR in other regression-based methods; Section 2 provides more
ablation studies; Section 3 presents qualitative results.

1 Application in Other Methods
We implement two recent regression-based methods (RBMs) [3, 10] for 3D hand pose es-
timation (HPE). After that, we apply Joint-Aware Regression (JAR) in them to show our
method’s versatility. As shown in Table 1, JAR brings significant improvements to both of
these methods. Next, we will introduce the details of these experiments.

1.1 VAE-based methods
VAE-based methods [1, 5, 6, 9, 10] use convolutional networks (CNNs) to encode the input
RGB image into a latent space and then use fully-connected layers to decode the sampled
variables from the latent space to recover the final pose. We adopt the baseline in [10] as our
baseline model. The details of this baseline model are shown in the left of Table 2. The base-
line model uses ResNet-18 as the backbone (BB) to encode RGB images to feature maps,
global average pooling (GAP) with two fully-connected layers as representation estimation
module (REM) to encode features to latent space, and four fully-connected layers with one

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Ren, Sun, Qi, Wang, and Huang} 2019

Citation
Citation
{Yang, Li, Lee, and Yao} 2019

Citation
Citation
{Gu, Wang, Ouyang, Li, Zhuo, etprotect unhbox voidb@x protect penalty @M {}al.} 2020

Citation
Citation
{Spurr, Song, Park, and Hilliges} 2018

Citation
Citation
{Theodoridis, Chatzis, Solachidis, Dimitropoulos, and Daras} 2020

Citation
Citation
{Yang and Yao} 2019

Citation
Citation
{Yang, Li, Lee, and Yao} 2019

Citation
Citation
{Yang, Li, Lee, and Yao} 2019

2 ZHENG, REN, SUN, WANG, QI: JOINT-AWARE REGRESSION

Figure 1: Latent space interpolation. The far left and far right show two input images and
their predicted pose. The middle shows the interpolated pose generated from linear interpo-
lations on the latent space. The first row shows the whole latent space interpolation results.
Due to our method dividing whole latent space into several joint-specific spaces, we can in-
terpolate between joints we want, which is more flexible in generations. The second row and
the third row show thumb and middle finger latent space interpolations, respectively.

dropout layer as the coordinates decoding module (CDM) to decode 3D pose. After that,
we use JAR with one head to replace the REM of CDM in the baseline model. The detailed
network is shown in the right of Table 2. Instead of encoding GAP features into a whole la-
tent space, this modified model encodes joint-specific feature maps into joint-specific latent
spaces responsible for the corresponding joints. Then, it decodes every joint’s location with
samples from the corresponding latent space.

The experiments are conducted on RHD dataset [11]. We utilize the same training
scheme as our primary contents do. The dimension of the latent variable is set to 64. For
more materials about VAE-based methods, we recommend referring to [10]. From the re-
sults in Table 1, we can see that JAR brings 3.39mm (21%) significant improvements to
VAE-based methods. Apart from performance improvement, VAE-based methods with JAR
disentangle the latent space from the whole pose space into a joint-wise space, which in-
creases the flexibility of hand generation. Figure 1 illustrates the flexible interpolations in
latent space.

1.2 SRN
Stacked Regression Network (SRN) [3] is an accurate and lightweight model for 3D HPE
from a depth image. It uses a differentiable re-parameterization module to reconstruct 3D
heatmaps and unit vector fields from predicted joint coordinates, allowing stack multiple
regression modules to improve performance.

This experiment is evaluated on the public depth images dataset, NYU dataset [7]. We
utilize ResNet-18 as the backbone and JAR with eight heads to replace the traditional regres-
sion methods in SRN. The batch size is set to 32. We use the Adam optimizer with an initial
learning rate of 1e-3 to train 40 epochs. The learning rate decreases to 1e-4 after 20 epochs.
For more details, we recommend referring to [3].

As shown in Table 1, JAR brings significant improvement to SRN with one stage (7.1%).

Citation
Citation
{Zimmermann and Brox} 2017

Citation
Citation
{Yang, Li, Lee, and Yao} 2019

Citation
Citation
{Ren, Sun, Qi, Wang, and Huang} 2019

Citation
Citation
{Tompson, Stein, Lecun, and Perlin} 2014

Citation
Citation
{Ren, Sun, Qi, Wang, and Huang} 2019

ZHENG, REN, SUN, WANG, QI: JOINT-AWARE REGRESSION 3

Method EPE (mm) 4 (mm)

Yang et al. [10] 16.61 0.00
Our implementation 16.53 0.08

+ JAR 13.14 3.47

Ren et al.[3]-1Stage 9.81 0.00
Our implementation 8.99 0.82

+ JAR 8.35 1.46

Ren et al.[3]-2Stage 7.78 0.00
Our implementation 7.89 -0.11

+ JAR 7.52 0.26
+ RM 7.45 0.33

Table 1: Performance of VAE-Based methods and SRN with JAR.

Baseline + JAR

Part Operation Shape Operation Shape

BB Input (3,256,256) Input (3,256,256)
ResNet-18 (512,8,8) ResNet-18 (512,8,8)

REM
GAP (512) Conv2D-Reshape (21,512)

FC - µ (64) FC - µ (21,64)
FC - σ (64) FC - σ (21,64)

CDM

Sample (64) Sample (21,64)
FC-ReLU (512) FC-ReLU (21,512)
FC-ReLU (512) FC-ReLU (21,512)
FC-ReLU (512) FC-ReLU (21,512)
Dropout (512) Dropout (21,512)

FC-Reshape (21,3) FC (21,3)
Table 2: Detailed network. Left is VAE-baseline model and right is VAE-JAR model.

When using two stages, the improvements are less obvious than using one stage (4.7%). We
think this is because this dataset is saturated. When adding additional refine maps (RM) for
refinement, the performance can get another 0.07mm improvement.

2 Ablation Studies
Here, we provide more ablation studies tunning the best choice of 1) residual blocks for
refinement stages’ backbone, 2) the number of feature maps for a head, and 3) the number
of heads.

2.1 Comparisons between different backbone blocks for refinement
stage

Previous works [2, 3, 4] usually utilize many residual blocks for refinement stages’ back-
bone. However, this will introduce much more parameters and computations overhead.

Citation
Citation
{Yang, Li, Lee, and Yao} 2019

Citation
Citation
{Ren, Sun, Qi, Wang, and Huang} 2019

Citation
Citation
{Ren, Sun, Qi, Wang, and Huang} 2019

Citation
Citation
{Iqbal, Molchanov, Breuel Juergenprotect unhbox voidb@x protect penalty @M {}Gall, and Kautz} 2018

Citation
Citation
{Ren, Sun, Qi, Wang, and Huang} 2019

Citation
Citation
{Ren, Sun, Huang, Hao, Cheng, Qi, Wang, and Liao} 2021

4 ZHENG, REN, SUN, WANG, QI: JOINT-AWARE REGRESSION

Blocks/Performance 1 2 3 4

w/o RM (mm) 11.19 11.14 11.34 11.55
w RM (mm) 10.97 10.96 10.99 10.95

Params (MB) 27.08 29.91 33.57 33.71
FLOPs (GB) 3.2G 3.7G 4.4G 5.0G

Table 3: Comparisons between different numbers of blocks for refinement stage’s backbone.

Moreover, we think the re-parameterized features are high-level features that do not need
to fuse with low-level features. Therefore, we only use one block for the refinements stages’
backbone.

As shown in Table 3, only using one block can achieve almost the best performance
with better efficiency. Moreover, the performance starts degenerating when using more than
two blocks. Besides, we can see that our re-parameterized refine maps bring significant
improvements for different numbers of blocks, especially for more blocks. This phenomenon
further proves the superiority of introducing refine maps to provide more information for
refinement adaptively.

2.2 Comparisons between different feature maps numbers for one
head

We conduct experiments to tune the best number of feature maps distributed to one joint. All
the experiments are done with one head. The results are shown in Table 4. We find that even
with one feature map for a joint, JAR can achieve performance (13.87mm) better than AFR
(14.08mm). This phenomenon demonstrates that reserving spatial information to enhance
the power of coordinates representations (CR) is essential. When increasing the feature
map number, JAR’s performance is even better. However, this improvement is gradually
saturated after the number reaches 8. This saturation may be caused by feature redundancy
and optimization difficulty caused by more parameters. Thus, we adopt eight feature maps
for a head for our final model.

2.3 Comparisons between different head numbers

We also attempt to use different numbers of heads. As shown in Table 5, using eight heads
is the best choice. When the head number is small, the network can not fully exploit differ-
ent representations for robust predictions. As the head number increases, the performance
becomes better. When the head number is bigger than 8, more representations become re-
dundant.

2.4 Comparisons between different multi-head method

We also try another two kinds of multi-head methods. The first one is similar to transformer
[8]. More specifically, this way uses the same features with different parameters for decod-
ing. In other words, this is using the same kind of coordinates representations with multiple
different coordinate decoding modules. The second one is the opposite of the first one, which
uses different features with the same parameters for decoding. This way works more like an

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

ZHENG, REN, SUN, WANG, QI: JOINT-AWARE REGRESSION 5

Feature Maps Num 1 2 4 8 16 32

Performance 13.87 12.88 12.28 12.08 12.03 12.06
Table 4: Comparisons between different feature maps numbers for a head.

Head Num 1 2 4 8 16

Performance 12.08 11.94 11.73 11.68 11.69
Table 5: Comparisons between different head numbers.

ensemble method for allowing the network to learn multiple similar representations to obtain
more robust results.

As shown in Table 6, both of these two methods perform worse than using different co-
ordinates representations and different coordinates decoding (CD) modules simultaneously,
especially when using large backbones. This phenomenon shows the importance of using
CR with the corresponding specific CD module.

3 Qualitative Results
We present some visual comparisons between different methods and the visual results of
JAR on four different datasets.

3.1 Comparisons between different methods
Figure 6 presents some qualitative comparisons between Average Feature Regression (AFR),
Latent 2.5D [2] (L25D), and JAR on RHD testing images. From the results, we can see
that JAR performs much better with complex poses, severe occlusions, and poor lighting
conditions. Moreover, JAR can predict more accurate depth values to obtain 3D hand poses.

3.2 Visual results on different datasets
We present some visual results on FreiHAND (Figure 2), HO-3D (Figure 3), RHD (Figure
4), and STB (Figure 5). The last row of these figures shows some failure cases (except STB).

On the FreiHAND dataset, we can see that JAR can solve extreme viewpoints, hand-
object interactions, and complex poses. We can see from the failure cases that JAR has dif-
ficulty solving particularly complex poses (fingers cross each other) and hands with extreme
scales. On the HO-3D dataset, JAR obtains good results with objects’ occlusions. However,
particularly severe occlusions will lead to totally wrong results. On the RHD dataset, JAR
can solve complex poses but have difficulty with extreme lighting conditions. On the STB

ResNet-18 ResNet-50

Same CR / Diff CD 11.81 11.10
Diff CR / Same CD 11.77 10.96
Diff CR / Diff CD 11.68 10.74

Table 6: Comparisons between different multi-head methods.

Citation
Citation
{Iqbal, Molchanov, Breuel Juergenprotect unhbox voidb@x protect penalty @M {}Gall, and Kautz} 2018

6 ZHENG, REN, SUN, WANG, QI: JOINT-AWARE REGRESSION

Figure 2: Visual results on FreiHAND dataset. The last row shows some failure cases.

Figure 3: Visual results on HO-3D dataset. The last row shows some failure cases.

dataset, JAR can also solve the unusual poses between two gestures change. Because STB is
relatively easier, we do not observe severe failed cases.

References
[1] Jiajun Gu, Zhiyong Wang, Wanli Ouyang, Jiafeng Li, Li Zhuo, et al. 3d hand pose

estimation with disentangled cross-modal latent space. In The IEEE Winter Conference
on Applications of Computer Vision, pages 391–400, 2020.

[2] Umar Iqbal, Pavlo Molchanov, Thomas Breuel Juergen Gall, and Jan Kautz. Hand
pose estimation via latent 2.5 d heatmap regression. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 118–134, 2018.

[3] Pengfei Ren, Haifeng Sun, Qi Qi, Jingyu Wang, and Weiting Huang. Srn: Stacked
regression network for real-time 3d hand pose estimation. In BMVC, page 112, 2019.

[4] Pengfei Ren, Haifeng Sun, Weiting Huang, Jiachang Hao, Daixuan Cheng, Qi Qi,

ZHENG, REN, SUN, WANG, QI: JOINT-AWARE REGRESSION 7

Figure 4: Visual results on RHD dataset. The last row shows some failure cases.

Figure 5: Visual results on STB dataset.

Jingyu Wang, and Jianxin Liao. Spatial-aware stacked regression network for real-time
3d hand pose estimation. Neurocomputing, 437:42–57, 2021.

[5] Adrian Spurr, Jie Song, Seonwook Park, and Otmar Hilliges. Cross-modal deep vari-
ational hand pose estimation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 89–98, 2018.

[6] Thomas Theodoridis, Theocharis Chatzis, Vassilios Solachidis, Kosmas Dimitropou-
los, and Petros Daras. Cross-modal variational alignment of latent spaces. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pages 960–961, 2020.

[7] Jonathan Tompson, Murphy Stein, Yann Lecun, and Ken Perlin. Real-time continuous
pose recovery of human hands using convolutional networks. ACM Transactions on
Graphics (ToG), 33(5):1–10, 2014.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008, 2017.

[9] Linlin Yang and Angela Yao. Disentangling latent hands for image synthesis and pose
estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9877–9886, 2019.

8 ZHENG, REN, SUN, WANG, QI: JOINT-AWARE REGRESSION

[10] Linlin Yang, Shile Li, Dongheui Lee, and Angela Yao. Aligning latent spaces for
3d hand pose estimation. In Proceedings of the IEEE International Conference on
Computer Vision, pages 2335–2343, 2019.

[11] Christian Zimmermann and Thomas Brox. Learning to estimate 3d hand pose from
single rgb images. In Proceedings of the IEEE international conference on computer
vision, pages 4903–4911, 2017.

ZHENG, REN, SUN, WANG, QI: JOINT-AWARE REGRESSION 9

Figure 6: Visual results between different methods.

