18 Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL

Supplementary material

A Experimental Detail

Scheduling for XA-TDAM model All the models in Tab.2 are trained for the same number
of epochs shown in Tab.l. The YA-TDAM model was initialized using parameters from
Dense models trained for (epoch/2) epochs shown in Tab.1, weight and bias are fixed and
then trained for another (epoch/2) epochs to optimize the quantization step size using layer-
wise optimization described in [EQ]. For TDAM weight scheduling, we utilize the same
scheduling with our TDSS, and the same random sampling technique for TDSS discussed in
Sec. 3.2.2 is also used for a fair comparison.

A.1 PilotNet Steering Angle Prediction (frame)

Dataset The PilotNet dataset [E1l] consists of a 10Hz video sequence captured by a camera
mounted on a car and the corresponding steering angels. Following the code accompanied
with the data, we randomly split the sequence into a train and test set with a ratio of 8:2.
We computed the MAC from the first 2,800 frames following the procedure of [Ed]. To
evaluate the efficiency in the higher frame-rate scenario, we used Super-slomo [BI] with
their provided pre-trained model to up-sample the sequence into 120 Hz and 480 Hz. The
accuracy metric for this dataset is mean squared error (MSE) in degrees. Steering angle label
larger than 27 are clamped to [—27,+27].

Network In this experiment, we used a 10-layer feed-forward CNN proposed in [H]. We
adopted the base network from [H] designed for this task. The input size of the network is
3 % 66 x 200. The network configuration is 24C5-36C5-48C5-64C3-64C3-1164FC-100FC-
S0FC-10FC-1FC. The first two layers use a stride of two without padding and the last two
use stride of one without padding. All the conv layer use ReLU as non-linearity. All the FC
layers except the last layer also use ReLU, and the final layer uses arctan, and the result is
doubled following the procedure of [EI].

Dynamic weighting for TDSS In this experiment using the PilotNet dataset, we used the
dynamic weighting for TDSS loss to avoid the excessive restriction of TDSS for samples
undergo large motion. The difference between consecutive frames varied across samples;
therefore, suppressing the TDSS with the same weight for these samples may excessively
restrict the change in activation for samples with a significant difference. We applied adaptive
scaling to mitigate this issue using the difference of output |y, —y,_1|. Specifically, we used
the following scaling:

T‘)’t *)’z71|2
Z[Tf:1(|yt’ _yt/71|2)’

n=n a7

where T is the total number of training frames and y(¢) is steering angle at time ¢, and 7 is
TDSS weight scheduled using validation data (Sec. 4.1).

Citation
Citation
{O'Connor and Welling} 2016

Citation
Citation
{PilotNet} 2018

Citation
Citation
{Yousefzadeh, Khoei, Hosseini, Holanda, Leroux, Moreira, Tapson, Dhoedt, Simoens, Serrano-Gotarredona, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Jiang, Sun, Jampani, Yang, Learned-Miller, and Kautz} 2018

Citation
Citation
{Bojarski, Delprotect unhbox voidb@x protect penalty @M {}Testa, Dworakowski, Firner, Flepp, Goyal, Jackel, Monfort, Muller, Zhang, etprotect unhbox voidb@x protect penalty @M {}al.} 2016

Citation
Citation
{Bojarski, Delprotect unhbox voidb@x protect penalty @M {}Testa, Dworakowski, Firner, Flepp, Goyal, Jackel, Monfort, Muller, Zhang, etprotect unhbox voidb@x protect penalty @M {}al.} 2016

Citation
Citation
{PilotNet} 2018

Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL 19

Step size Window size

Sample 1 H

Sample 2

Figure Al: Sliding window estimation used in N-MNIST dataset. For the N-MNIST
dataset, the output histogram is computed in a sliding window manner. Each event sample
contains a different number of events. Therefore, the number of accumulation depends on
the length (number of events) of a data sample.

A.2 N-MNIST Digit Recognition (event)

Dataset The N-MNIST dataset [EX] consists of MNIST images converted into an event-
stream using an event-based camera moving on a pan-tilt unit mimicking saccadic motion.
The training and testing separation are the same as the standard MNIST split of 60,000 train-
ing samples and 10,000 testing samples. The data was not stabilized for a fair comparison
with SLAYERS [B9]. This dataset’s accuracy metric is classification accuracy. We used test-
ing samples without sliding window (Fig. Al) as validation data and testing samples with
the sliding window as test data.

Network In this experiment, we used a 3-layer feed-forward CNN. Input size of the net-
work is 2 X 34 x 34. The network configuration is 32C5-P2-64C5-P2-16C3-1024FC-10FC.
All the layers use a stride of one with padding so that the spatial dimension does not change
between input and output. All the conv layer use ReLU as non-linearity. All the FC layer
except the last layer also use ReLU and the last layer use softmax.

Estimation by sliding window The output from the network is accumulated in a sliding
window manner (in step size of 100) within each dataset sample before computing class
prediction. This is illustrated in Fig. Al. This strategy is also applied for Dense, Asyc-SSC
[EX], and XA-TDAM [Ed]. The results without sliding windows are 0.7-1.0% worse than
those with sliding windows in all configurations.

More results In addition to the method shown in the main paper, we also report an ad-
ditional comparison with computationally light models DART [B4] and the SOTA binary
SNN model SNN-BP [E2] and SLAYERS [E49]. We did not have a chance to measure MAC
for these methods; ours showed superior or comparable accuracy to these methods, DART
(accuracy: 98.0%) and SNN-BP (accuracy: 98.7%) and SLAYERS (accuracy: 99.2%).

A.3 N-Caltech101 Object Recognition (event)

Dataset The N-Caltech101 dataset [E2] is a converted event-steam from Caltech101 [EJ]
using a method similar to N-MNIST. It contains 8,246 event samples in total, which are
labeled 101 classes. The accuracy metric for this dataset is classification accuracy.

Citation
Citation
{Orchard, Jayawant, Cohen, and Thakor} 2015

Citation
Citation
{Shrestha and Orchard} 2018

Citation
Citation
{Messikommer, Gehrig, Loquercio, and Scaramuzza} 2020

Citation
Citation
{O'Connor and Welling} 2016

Citation
Citation
{Ramesh, Yang, Orchard, Leprotect unhbox voidb@x protect penalty @M {}Thi, Zhang, and Xiang} 2019

Citation
Citation
{Lee, Delbruck, and Pfeiffer} 2016

Citation
Citation
{Shrestha and Orchard} 2018

Citation
Citation
{Orchard, Jayawant, Cohen, and Thakor} 2015

Citation
Citation
{Li, Fergus, and Perona} 2007

20 Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL

Network The base network uses VGG13 [BO] as the backbone, followed by an FC layer
that outputs a 101-dimensional vector. Input size of the network is 2 x 191 x 255. The
network comprises three VGG conv blocks followed by two conv with a kernel size of 3
outputting 128-dimensional feature, followed by FC to output 101 classes. In this experi-
ment, we followed the testing method of [EA] and used the first 25,000 events from each data
sample, without accumulation by sliding windows, as in the case of N-MNIST.

For Asyc-SSC [ED] we utilized their published code?, only modifications from original
code is optimizer (we used AdamW [ET] instead of Adam [B3]), batch size and a number of
training epochs which is summarized in Tab.1. The results, including the dense VGG model,
shown in Tab.2 were slightly lower than the reported accuracy in [E].

More comparison In addition to the method shown in the main paper, we made an ad-
ditional comparison with computationally light models HOTS [EJ], HATS [RI] and DART
[B4], and CNN-based method called YOLE [B], which also utilized recursive update. Ours
achieve considerably better MAC/accuracy trade off than HOTS (accuracy: 0.210%, MAC:
27MORPS for 1 event), HATS (accuracy: 0.642%, MAC: 2.2MOPS for 1 event), DART (ac-
curacy: 0.664%), and YOLE (accuracy: 0.702% , MAC: 1,830 MOPS for 1 event)

A.4 Genl Autom. Object Detection (event)

Dataset Genl automotive dataset [E3] contains 228,123 bounding boxes for cars and 27,658
pedestrians collected from an event-based camera mounted on a car. The accuracy metric is

mean average precision (mAP) [[3]. The base network uses VGG13 [BI] as the backbone,

and the last layer is followed by the YOLO header [E3] to generate bounding boxes and class

predictions.

Network Input size of the network is 2 x 223 x 287. The network comprised of three VGG
Conv block followed by a conv with a kernel size of 3 which output 256-dimensional feature;
that is processed by two FC output 6 x 8 x 2 x 2 dimensional vector; that is passed to the
YOLO [B3] header to output bounding-boxes and class prediction.

For Asyc-SSC [E] we utilized their published code’, modifications from original code is
optimizer (we used AdamW [ET] instead of Adam [B3]), batch size and number of training
epochs which is summarized in Tab.1. The results, including the dense VGG model, shown
in Tab.2 were slightly lower than the reported accuracy in [EX].

“https://github.com/uzh-rpg/rpg_asynet
Shttps://github.com/uzh-rpg/rpg_asynet

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{Messikommer, Gehrig, Loquercio, and Scaramuzza} 2020

Citation
Citation
{Messikommer, Gehrig, Loquercio, and Scaramuzza} 2020

Citation
Citation
{Loshchilov and Hutter} 2017

Citation
Citation
{Kingma and Ba} 2015

Citation
Citation
{Messikommer, Gehrig, Loquercio, and Scaramuzza} 2020

Citation
Citation
{{Lagorce}, {Orchard}, {Galluppi}, {Shi}, and {Benosman}} 2017

Citation
Citation
{Sironi, Brambilla, Bourdis, Lagorce, and Benosman} 2018

Citation
Citation
{Ramesh, Yang, Orchard, Leprotect unhbox voidb@x protect penalty @M {}Thi, Zhang, and Xiang} 2019

Citation
Citation
{Cannici, Ciccone, Romanoni, and Matteucci} 2019

Citation
Citation
{Tournemire, Nitti, Perot, Migliore, and Sironi} 2020

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x protect penalty @M {}Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{Redmon, Divvala, Girshick, and Farhadi} 2016

Citation
Citation
{Redmon, Divvala, Girshick, and Farhadi} 2016

Citation
Citation
{Messikommer, Gehrig, Loquercio, and Scaramuzza} 2020

Citation
Citation
{Loshchilov and Hutter} 2017

Citation
Citation
{Kingma and Ba} 2015

Citation
Citation
{Messikommer, Gehrig, Loquercio, and Scaramuzza} 2020

https://github.com/uzh-rpg/rpg_asynet
https://github.com/uzh-rpg/rpg_asynet

Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL 21

B Learning Dynamics

Fig. A2 shows the transition of parameters during training on the PilotNet and N-MNIST
experiment conducted in the main experiment. As expected, we observed that as the TDSS
loss decreased, the MAC also decreased, and the quantization step size s and sparsity of
synaptic connection increase correspondingly.

o (a) Error (b) Weight for DSS (c) Inverse ization step size
m—
2500- 800 N ————————
8
1]
1/ 500 200
‘ e
i
) —— Test o \\
000 200 a0 600 800 1000 [] 260 400 500 800 1000 [] 260 30 560 800 1000
(d) DSS/DAM loss (e) MAC for update (f) Sparcity of synaptic connection
p—— p——
= —
£
2 7 40-

(a) Error (b) Weight for DSS () Inverse step size

0.035-

0030

0.025

£o020
0015
0010 WA
260 6

‘
\ w _—
\ .
A \
ol
o

[] 0 B

(d) DSS/DAM loss. (e) MAC for update (f) Sparcity of synaptic connection

0.025

0.020

Boos

0.010

0,005

Figure A2: The evolution of parameters during training. PilotNet (Top), N-MNIST
(Bottom). The horizontal axis is the number of learning epochs. x = 8 for both experiments.

22 Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL

C Sparsity of Synaptic Connection

Tab.A 1 shows the number of synaptic connections of the network used in the main and abla-
tion experiments in Sec. 4. As shown in Tab.2, ours achieve lower MAC when the network
has more learnable parameters. We hypothesized this is because our mX¥A network trained
with TDSS learns to select the computational path by activation that triggers neurons in the
following layers sparsely. And when the network has more parameters, it could represent a
sparser path that results in a lower MAC. There are other possibilities based on the lottery
thicket hypothesis [[4]. Given this hypothesis, the networks having more trainable parame-
ters won the lottery to realize sparser synaptic connections achieving the same accuracy.

Results in Tab.Al summarize synaptic connection after training (sparse SC) for each
network. We observed that networks that achieved lower MAC (larger learnable parameters)
still had more synaptic connections after training. This fact partially supports the hypothesis
that the m XA network trained with TDSS selects computational paths that require less MAC
by activation. More in-depth analysis will be future work.

Table Al: Sparsity of synaptic connection in different network size. Each row corre-
sponds to our mXA-TDSS model having k times larger input/output channel dimension in
mconv layer (except FC layer). Columns are defined as follows: weight is number of train-
able weight for mconv, dense SC is number of synaptic connection when all the masks m are
1, and sparse SC is number of synaptic connection after training.

PilotNet N-MNIST
weight dense SC sparse SC weight dense SC sparse SC
(x1) | L59E+06 2.82E+07 1.44E+06 | 7.24E+04 1.72E+07 3.44E+06
(x2) | 1.91E+06 9.62E+07 1.85E+06 | 2.37E+05 6.41E+07 4.72E+06
(x4) | 3.10E+06 3.56E+08 2.27E+06 | 8.73E+05 247E+08 4.75E+06
(x8) | 7.69E+06 1.37E+09 3.18E+06 | 3.37E+06 9.67E+08 5.07E+06
N-Caltech 101 Genl Automotive
weight dense SC sparse SC weight dense SC sparse SC
(x1) | 3.69E+06 8.09E+08 5.60E+08 | 2.81E+07 1.09E+09 7.23E+08
(x2) | 487E+06 2.67E+09 1.29E+09 | 2.93E+07 3.55E+09 1.48E+09

Citation
Citation
{Frankle and Carbin} 2018

Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL 23
D Locally Connected Network

Locally Connected Network (LCN) was invented before CNN [[[d] has arrived on the scene.
Inspired by the organization of the visual cortex [IH, 4], several early neural networks con-
sisted of locally connected neurons [[3, BA] without spatial parameter sharing. After the
successful combination of CNN and backpropagation [BA], CNN was considered to gener-
alize better than LCN [H]. Low-Rank Locally Connected (LRLC) layer [[I], a low-rank
version of LCN, was proposed recently, and they demonstrated that it performed better than
CNN. From now on, both will be referred to as LC together; in particular, the former is called
Full-Rank LC (FRLC), and the latter is called LRLC.

LC has more flexibility than conv therefore, we considered using the extra flexibility of
these models could further reduce MAC. To this end, we considered a masked version of
LC, which we call mLC similar to mconv discussed in the main paper. More specifically,
we considered two variants of mLC, one is based on FRLC (mFRLC), and the other is based
on LRLC (mLRLC). The number of learnable parameters is mFRLC >> mLRLC > mconv;
however, all the variants requires the same number of neurons and synapses when mapped
onto graph-based processors (given the same shape of weight and weight sparsity). The
MAC and number of trainable parameters of mconv and mLC are summarized in Tab.A2.

D.1 Preliminary Results using mLC

We trained mFRLC and mLRLC networks using the same framework discussed in Sec.
3.2. In the preliminary experiments, mFRLC performed exceptionally well on N-MNIST
and PilotNet experiments, achieving more than 3x better MAC/accuracy trade-off than the
mconv(1x) model shown in Tab.2, both mFRLC and mLRLC network are trained in the same
way using TDSS loss and quantizer with macro-grad. The mLRLC model also performed
better than the mconv(1x) model, which showed a 1.5x better MAC/accuracy trade-off.

However, in our preliminary experiments on N-Caltech101 and Genl automotive, we
saw the opposite result; mFRLC performed poorly than the model using mconv the mLRLC
only slightly outperformed the model using mconv. We suspect this is due to overfilling due
to the excessive flexibility of mLC since the VGG13-mFRLC model has a too large degree
of freedom for the amount of given training data, making it over-fit to the training data.

Thought, we believe mLC trained with the proposed DSS aware training framework will
further reduce MAC on these datasets if we incorporate an appropriate regularizer or utilize
training techniques such as self-supervised training. The computation of DSS of (12) does
not require labels. Therefore, we can train the network in a self-supervised way utilizing
pseudo-labels estimated by another pre-trained network for unlabeled data. We will leave
the investigation as the future research topic. For the benefit of interested readers, each
network is briefly described below.

D.2 Masked Full-Rank Locally Connected Layer (mFRLC)

This variant has maximum flexibility, and it is expected to achieve a better MAC/accuracy
trade-off given sufficient training data. The parameters for mFRLC are more than two orders
of magnitude larger than those of mconv. One could realize the mFRLC model simply by
replacing mconv layer with FRLC layer®. In the case of mFRLC, the TDSS loss in (12) can

SThis is implemented as default layer in some frameworks, e.g., in Keras, it is implemented as
LocallyConnected2D layer. Since this operation does not exist in Pytorch [EJ] (version 1.8), we implemented it

Citation
Citation
{Fukushima and Miyake} 1982

Citation
Citation
{Hubel and Wiesel} 1963

Citation
Citation
{Hubel and Wiesel} 1968

Citation
Citation
{Fukushima} 1975

Citation
Citation
{Vonprotect unhbox voidb@x protect penalty @M {}der Malsburg} 1973

Citation
Citation
{LeCun etprotect unhbox voidb@x protect penalty @M {}al.} 1989

Citation
Citation
{Bartunov, Santoro, Richards, Marris, Hinton, and Lillicrap} 2018

Citation
Citation
{Elsayed, Ramachandran, Shlens, and Kornblith} 2020

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, and Chintala} 2019

24 Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL

be evaluated in the same way as described for Sec. 3.2.2. The possible major drawback of
this network is over-fitting.

D.3 Masked Low-Rank Locally Connected Layer (mLRLC)

To mitigate the overfitting of mFRLC, we considered mLRLC, which is the low-rank ver-
sion of mMFRLC. This variant is based on LRLC [[] and extended by introducing a masking
mechanism. Once the position dependant low-rank LC weight is generated by a linear com-
bination of the filter bank, it is also used as a mask in the same way we discussed in Sec.
3.2.2 using the masking procedure of (14).

We have reimplemented LRLC in Pytorch, referring to their paper [[] and open-sourced
code’. For combining weights, we utilized the technique described in their paper, which
learn combining weights per-row and per-column of location (r, ¢) to reduces the number of
combining weights parameters as follows:

wid = o) + B, (18)

Spatially varying bias is also parameterized in a similar manner, which is also described
in their paper as follows:

Bcr= b:ow +bgolumn _'_b;hanncl ’ (19)

where bV ¢ RH, bcolumn c]RW, and bchannel c Rcout_

Improving training efficiency on GPUs To increase the computational efficiency on the
GPU, they first perform the convolution with the filter banks and then linearly combine the
results instead of synthesizing equivalent LC weight and then perform the convolution with
the synthesized weight. Although this technique increases the required MAC, the actual
computational speed is greatly improved on GPU. This seemingly contradictory result is due
to the GPU’s limited memory bandwidth.

We cannot use the technique because we need synthesized weight to compute mask m
using the binarizer of (14) to evaluate the TDSS of (12). Therefore, we first synthesize the
weight and perform the convolution with the synthesized weight. On GPUs, this method is
several times slower than using their technique.

Note that the opposite is true when running the LC (FRLC or LRLC) network on a graph-
based processor, where directly applying the synthesized LC filter requires less MAC, and it
is actually faster.

Table A2: Ablation analysis of computational complexity. pim and p,<,,l) represent ratios

of non-zero elements in AI") and m'), respectively. M) := Cgﬁtl)k(l"’l)k(l“)ci(éﬂ). The
table shows the case where stride=1. The superscript in / represents layer index.

MAC
Dense XA \ # param. # synapse
meonv | HOwO A0 H(”W(’)p,gf)pi(l)./\/t(’) M0 HOw O A0
mLC HOwO a0 H(’)W(l)p,(,f)pi(l)./\/l(l) HOWwO MO gOw D A0

using unfold and einsum operation.
Thttps://github.com/google-research/google-research/tree/master/low_rank_
local_connectivity

Citation
Citation
{Elsayed, Ramachandran, Shlens, and Kornblith} 2020

Citation
Citation
{Elsayed, Ramachandran, Shlens, and Kornblith} 2020

https://github.com/google-research/google-research/tree/master/low_rank_local_connectivity
https://github.com/google-research/google-research/tree/master/low_rank_local_connectivity

Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL 25

E Neuron model

SNNs [B3] have recently gained much attention, especially for the low-power processing of
sparse data from event-based cameras on edge devices. The key to their efficiency lies in
the sparse event-based processing, and they show promising energy efficiency [E4, Bd, B3].
The leaky and fire (LIF) neuron (Fig. A3-a) is one of the popular neuron models in SNN. In
the LIF model, neurons communicate using binary spike 6 (¢); This binary spike generates
a time-decaying current I(¢). The current is integrated according to the weights w to update
the time-decaying membrane potential. When this membrane potential reaches a threshold,
it fires a binary spike. However, the LIF model involves complex temporal dynamics that
prevent scaling to larger neuron sizes. This also poses difficulties concerning training due to
the non-differentiability.

o . :)

N PP (B O AR
o \ © o @0 o @F—
®\° AN N)y &N N\

e

C O @ C O @ C O

A A
v s
X

S(l) / ; t

B — t

; T
(a) LIF neurons (b) XA neurons (c) ANN neurons

Figure A3: XA type neuron compared with SNN neuron and ANN neuron. The XA
neurons discussed in the paper are shown in (b). It is equivalent to Temporal-Difference
(TD) neuron when the quantization Q in (3) is identity. In the case of XA neuron, the last
fired activation I; (solid purple line) behaves with a slight delay relative to the membrane
potential X; (dashed purple line). The XA or TD neurons are somewhat intermediate between
LIF neuron (a) and ANN neuron (c).

The temporal-difference (TD) neuron [EG, ER] (Fig. A3-b) is equivalent to ANN neuron
(Fig. A3-c). Therefore it can be easily trained using error back-propagation on the equivalent
ANN network. Furthermore, TD neurons do not have complex temporal dynamics as LIF;
therefore, they are highly compatible with digital circuits.

To further reduce MAC for computing wll) 5 All(l) one needs to increase the sparsity of

AI,(I). The RRM [ER] utilizes thresholding, while the YA [Ed] network utilizes quantization
for the difference of activation. Since the RRM thresholding simply discards values whose
absolute value is less than the threshold, errors accumulate over time; thus, a resetting mech-
anism is required. Our framework is applicable for both TD and XA neurons. We choose
YA neuron as our base model because it does not require resetting (easier to operate). It is
also hardware feasible, and SoC designed for this type of neuron is emerging on the market
[E3]. As discussed in Sec. 3.1, XA network is equivalent to quantized ANNs. Therefore, in

Citation
Citation
{Rajendran, Sebastian, Schmuker, Srinivasa, and Eleftheriou} 2018

Citation
Citation
{Lee, Delbruck, and Pfeiffer} 2016

Citation
Citation
{Shayer, Levi, and Fetaya} 2018

Citation
Citation
{Voelker, Rasmussen, and Eliasmith} 2020

Citation
Citation
{O'Connor and Welling} 2016

Citation
Citation
{Pan, Lin, Fang, Huang, Zhou, and Lu} 2018

Citation
Citation
{Pan, Lin, Fang, Huang, Zhou, and Lu} 2018

Citation
Citation
{O'Connor and Welling} 2016

Citation
Citation
{Moreira, Yousefzadeh, Chersi, Kapoor, Zwartenkot, Qiao, Cinserin, Khoei, Lindwer, and Tapson}

26 Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL

some respects, the XA neuron can be considered somewhere between the LIF and (quantized)
ANN neuron models. The XA network could be operated very efficiently when the network
is mapped onto processors that can exploit dynamic sparsity (ignore zeros in activation map
or weight), such as EIE [[3], IPU [[], TrueNorth [@], or neuron-flow [E3]. These devices
use an in-memory processor architecture where memory and ALU (arithmetic logic unit) are
co-located, which is quite different from Neumann-type architectures such as GPUs.

Citation
Citation
{Han, Liu, Mao, Pu, Pedram, Horowitz, and Dally} 2016

Citation
Citation
{GraphCore}

Citation
Citation
{Cassidy, Merolla, Arthur, Esser, Jackson, Alvarez-Icaza, Datta, Sawada, Wong, Feldman, Amir, Rubin, Akopyan, McQuinn, Risk, and Modha} 2013

Citation
Citation
{Moreira, Yousefzadeh, Chersi, Kapoor, Zwartenkot, Qiao, Cinserin, Khoei, Lindwer, and Tapson}

Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL 27

F Soft-shrink and Binarizer

The soft-shrink function S of (13) and the binarizer function B of (14) discussed in Sec. 3.2
is defined as follows:

x—y, ifx>+y

Sthy)=q x+7 ifx<-y (20)
0, otherwise
1 ifx >y
Bx,7) = { 0, otherwise @
We use the following gradient for the operations,
as 1, if|x|>7y
E(X’ = { x, otherwise (22)
0B sgn(x) if x| >y
ﬁ(x’ = { 0, otherwise (23)

The gradient for S has a non-zero value even when its output is zero; this enable inactive
neuron (masked neuron) could be alive again to improve accuracy. The gradient for B guides
the mask to be sparser (disconnect synaptic connection) by decreasing the TDSS loss.

The threshold 7 is initialized as follows:

6
=0.1 . 24
r=01/ - 24)

We used initialization based on the Kaiming uniform method [Z4]. To compensated the effect
of the softshrink we modified it as follows:

wU(=B,+B) (25)

B= +y (26)

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

28 Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL

G MAC computation

In the main experiment, we used multiply-add accumulation (MAC) as the evaluation metric
of computational complexity. We report MAC of conv or mconv for all networks (FC was
treated as 1x1 conv or mconv). Following operations are omitted from the MAC calculation:
i) bias of Dense network, ii) pooling (maxpool/avgpool) of all network type.

We report MAC instead of floating-point operations per second (FLOPS). This evaluation
metric is adopted from [, B2, BE9], which uses the same neuron model. This is why the
value listed in Tab.2 is about half of the value reported in [EX]. FLOPS count the product and
sum operations separately, while MAC counts the product and sum operations as a single
operation. Since the results in Tab.2 ignore the MAC for pooling operations; therefore, the
MAC of Asyc-SSC in Tab.2 is not exactly half, but slightly less than half of the FLOPs
reported in [EX].

H Pytorch code for macro-grad
The Pytorch [E9] implementation of the proposed macro-grad is shown in listing 1. It is

implemented using auto-grad; therefore, the framework automatically computed backward
computation of (9).

Listing 1: Pytorch implementation of the quantization using macro-grad (mg_round) and
LSQ (Isq_round).

1 def ste_round(x):
return x + (x.round() — x).detach()

def mg_round(x, s):
return ste_round(x.div(s)).mul(s.data)

def 1sq_round(x, s):
return ste_round(x.div(s)).mul(s)

0NN B W

Citation
Citation
{Habibian, Abati, Cohen, and Bejnordi} 2021

Citation
Citation
{Khoei, Yousefzadeh, Pourtaherian, Moreira, and Tapson} 2020

Citation
Citation
{Yousefzadeh, Khoei, Hosseini, Holanda, Leroux, Moreira, Tapson, Dhoedt, Simoens, Serrano-Gotarredona, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Messikommer, Gehrig, Loquercio, and Scaramuzza} 2020

Citation
Citation
{Messikommer, Gehrig, Loquercio, and Scaramuzza} 2020

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, and Chintala} 2019

Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL 29

I Pytorch code for Conv2d with TDSS loss

The Pytorch [EY] implementation of the Conv2d for training with TDSS loss is show in
listing 2.

Listing 2: Pytorch implementation of Conv2d with TDSS. Input x for each convolution layer
is assumed to be a concatenation of temporally consecutive frame in batch dimension. The
TDSS loss is computed by compute_tdss (We call this using forward_hook).

1 class TDSS_Conv2d(nn.Module):

2 def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=(0,0)):
3 super(TDSSConv2d, self).__init__()

4 self kernel_size = kernel_size

5 self.padding = padding

6 self.in_channels = in_channels

7 self.out_channels = out_channels

8 self.stride = stride

9 self.quantizer = mg_round
10
11 self.register_parameter("weight", nn.Parameter(torch.zeros(out_channels, in_channels, xkernel_size)))
12 self.register_parameter("bias", nn.Parameter(torch.zeros(out_channels)))
13
14 self.masker = Masker.apply(x)
15 self.binalize = Binarizer.apply(x)
16
17 def compute_tdss(self, x):
18 x = self.quantizer(x)
19 x0, x1 = torch.chunk(x, 2, dim=0)
20 d = F.unfold((x0.sub(x1)).abs(), kernel_size=self .kernel_size, padding=self.padding, stride=self.stride)
21
22 mask = self.binalize(self.weight).flatten(1)
23
24 mac = torch.einsum(’oi,_bis—>b’, mask, (d!=0).to(x))
25 tdss = torch.einsum(’oi,_bis—>b’, mask, d)
26 return tdss, mac
27

28 # x = torch.cat([x_t0, x_t1], dim=0)
29 def forward(self, x):

30 x = self.quantizer(x)

31 x = F.conv2d(x, self.masker(self.weight), bias=self.bias, stride=self.stride, padding=self.padding)
32 return x

33

34 DEFAULT_LAMBD = 5¢-3
35 class Binarizer(torch.autograd.Function):

36 @staticmethod

37 def forward(ctx, inputs, lambd=DEFAULT_LAMBD):
38 ctx.save_for_backward(inputs)

39 return inputs.abs().gt(lambd).to(inputs)

40 @staticmethod

41 def backward(ctx, grad_output):

42 inputs = ctx.saved_tensors

43 grad_output = (inputs[0].sgn())=grad_output

44 return grad_output, None

45

46 class Masker(torch.autograd.Function):

47 @staticmethod

48 def forward(ctx, inputs, lambd=DEFAULT_LAMBD):
49 ctx.save_for_backward(inputs)

50 ctx.lambd = lambd

51 return F.softshrink(inputs, lambd=lambd)

52 @staticmethod

53 def backward(ctx, grad_output):

54 inputs = ctx.saved_tensors[0]

55 lambd = ctx.lambd

56 idx_masked = inputs.abs().le(lambd)

57 grad_output[idx_masked]+=(1/lambd:inputs[idx_masked].abs())

58 return grad_output, None

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, and Chintala} 2019

