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A Experiments on the ablation of probe performance due
to downsampling strategies

As a concession to practicality, it is necessary to reduce the dimensionality of the feature
maps to train logistic regression probes on the output of convolutional layers. This problem
is addressed by the original authors [1] with two fairly crude solutions. The first being a
global average pooling on the feature map and the second one a random selection of positions
on the feature map. We reject the random strategy, since we want to avoid adding a random
component to our measurements that may introduce noise or instability. The global pooling
strategy looks more promising to us, since global pooling is also performed on most recent
architectures as an interface between convolutional and dense sections of the network [4, 8,
14, 15, 16, 18]. However, global average pooling inside neural architectures is generally
performed on the last layer’s output, which can be expected to be fairly low dimensional
on the height and width axis compared to earlier layers. Furthermore, due to the smaller
receptive fields of earlier layers, the encoded information will be more local and thus more
heterogeneous based on the position of the entry. Since these circumstances are likely to
negatively affect the performance and / or introduce artifacts into the probe performance
measurements of early layers, we decide to look for less invasive downsampling strategies.

We test downsampling of feature maps using the nearest interpolation algorithm as well
as adaptive average pooling to a smaller feature map size. For testing, we use two models
as test benches. First, the modified version of ResNet18 described in the last experiment of
section 4.3, which is trained on a 32× 32 pixel resolution. Second, the original ResNet18
implementation trained on 224×224 pixel input resolution. Both models are trained for 90
epochs using stochastic gradient descent with an initial learning rate of 0.1 and a momen-
tum of 0.9. The learning rate is multiplied with 0.1 every 30 epochs. These training setups
both feature no tail pattern, which is important for testing the effect of the downsampling
strategies, since we expect more aggressive downsampling to have a negative effect on probe
performance. Negative effects would be harder to interpret on late layers with a tail pat-
tern, since a tail effectively means that the problem is already solved and the layers perform
basically on the same performance level as the output. We choose two input resolutions to
observe the effects of downsampling on two different scales.

We train probes on feature maps reduced to a maximum of 1, 2, 3, 4, 5, 6 and 7 pixels in
height and width using both average pooling and downsampling.

The results can be seen in Fig. 8. On large feature map resolutions, we observe that both
strategies produce very similar patterns. However, the structural integrity of those patterns is
better maintained on average pooled feature maps. When reduced to a single depth-vector,
the nearest-downsampling destroys the pattern otherwise visible on any other downsampling
resolution. Other than that, increasing the size of the reduced feature maps has a globally
negative impact on probe performance. Earlier layers being affected worse from the decrease
than later layers, which is expected for the aforementioned reasons. Based on the results of
these experiments, we decided to compute probe performances in this paper using feature
maps adaptive average pooled to a resolution of 4×4, which is computable with reasonable
computational resources while maintaining the relative structure of the probe performances.
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(a) Probes trained on downsampled feature maps. The model was
trained on 32×32 input resolution.

(b) Probes trained on downsampled feature maps. The model was
trained on 224×224 input resolution.

(c) Probes trained on adaptive average pooled feature maps. The
model was trained on 32×32 input resolution.

(d) Probes trained on adaptive average pooled feature maps. The
model was trained on 224×224 input resolution.

Figure 8: As expected, more aggressive reduction in feature maps sizes negatively impact
the probe performance. Average pooling seems to be able to maintain the structure of probe
performances better. Downsampling to a single pixel induces heavy artifacts, destroying the
otherwise prevalent pattern of probe performances.
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B Details on experimental setups

B.1 Details on experimental setups from experiments in section 3

B.1.1 Dataset and data augmentation

The experiments are conducted on CIFAR10. The images are channel-wise normalized with
µ =(0.4914,0.4822,0.4465) and σ =(0.2023,0.1994,0.2010). At training time, the images
are first cropped randomly with a 4 pixel zero-padding on all edges. The size of the crop is
32×32 pixels. Then the crops are horizontally flipped randomly with a probability of 50%.
The images of the training set are reshuffled after each epoch.

B.1.2 Models

The experiments use VGG11, 13, 16 and 19 as well as four additional variations of the
aforementioned architectures. The variations have all filter sizes reduced by a factor of 2, 4,
8 and 16. Furthermore, the architectures are slightly modified by adding batch normalization
layers after each convolutional layer. In addition, the flattening layer serving as the con-
nection between convolution feature extractor and densely connected classifier is replaced
by a global pooling layer. The variations are included in order to not only include models
of various depth, but also of varying width in our results. These are two common degrees
of freedom in neural architecture design. The modification to the architectures are made to
include common architectural features that can be considered standard in most modern ar-
chitectures. Furthermore, the global pooling layer makes the models agnostic towards the
input resolution. This enables us to alter the input resolution without changing the number
of parameters inside the model. PCA-Layers for projecting the network are added after each
convolutional and linear layer.

B.1.3 Training setup and parameters

We use the same training setup for all models we test in this chapter. Since we are interested
in in-development scenarios, we do not apply hyperparameter optimization. Instead, we
use default-values of PyTorch wherever possible and otherwise settings that are generally
in the common range of hyperparameters used for similar classification tasks. The exact
hyperparameter settings are depicted in Table 3. We find that 30 epochs is enough time for
all models to converge to a stable solution on CIFAR10.

Parameter Values

Epochs 30
Batch size 128
Optimizer ADAM
ADAM: beta1 0.9
ADAM: beta2 0.999
ADAM: epsilon 1e-8
ADAM: learning rate 0.001

Table 3: Hyperparameters common to each of the experiments in Section 3
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B.1.4 Number of experiments conducted

In the experiment in Fig. 1 a total of 60 models are trained. Each neural architecture is trained
3 times using the same setup. The experiments in Tables 1 and 2 are repeated 26 and 40 times
respectively on the same model using the same setup. We also ran 15 additional experiments
on ResNet18 and VGG11, similar to the aforementioned experiments. The results of these
are depicted in Table 9 and 12.

B.1.5 Details on PCA-Layer Projections

The eigenvalues and eigenvectors of the output of all PCA-Layers are computed when the
switch from training to testing occurs at the end of an epoch. At this point, the projection ma-
trix is computed and the aggregation variables (running sum, running squares and number of
seen samples) are reset in each PCA-Layer. The PCA-Layers keep the last computed covari-
ance matrix in memory as an internal variable. This allows us to recompute the projection
matrix PEk

l
.

B.2 Details on experimental setups from experiments in section 4 and
5

B.2.1 Dataset

The experiments conducted in Section 4 use models trained on CIFAR10, ImageWoof and
ImageNette. We additionally reproduce some results on MNIST and TinyImageNet and
compute the saturation levels of ResNet18 on ImageNet. These results are not depicted in
Section 4; however, these results are included in Appendix C. We choose these datasets to
test our hypothesis on different levels of complexity, regarding the number of classes as well
as the natural resolution of the images.

The preprocessing and data augmentation is the same as in Section 3. The input resolu-
tion differs depending on the dataset and the running experiment. If not mentioned otherwise,
the images are processed in their native resolution. MNIST data is additionally transformed
into RGB to avoid changes in the neural architecture. In any case, the resizing is performed
after the augmentation pipeline is applied on a batch of images.

B.2.2 Models

The experiment uses the same models as in Section 3. Additionally, we train ResNet18 and
ResNet34 with filter sizes reduced by a factor of 1, 2, 4 and 8. We include the ResNet ar-
chitectures to include another architecture, with a feature (skip connections), that may affect
how the information is flowing though the network. We also remove the skip-connections
on ResNet18 and 34 for two experiments to observe the effects of disabled skip connec-
tions. Different from previously described experiments, none of these architectures have
PCA-Layers.

B.2.3 Training setup and parameters

We choose a static training setup of all models and datasets, with the same reasoning as in
the experiments conducted in Section 3. Compared to the setup described of the experiments
in Section 3, the batch size is changed to 32 (16 in the cases of ResNet34, VGG16 and 19)
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due to memory limitations. However, we find through brief exploration that slight changes
in the hyperparameter optimization described here as well as additional epochs of training
do not influence the results described in Section 4 in any meaningful way.

Parameter Values

Epochs 30
Batch size 32 (16 for ResNet34, VGG16 and VGG19)
Optimizer ADAM
ADAM: beta1 0.9
ADAM: beta2 0.999
ADAM: epsilon 1e-8
ADAM: learning rate 0.001

Table 4: Hyperparameters common to each of the experiments in Section 4

B.2.4 Probe setup

The data used for training the probes is extracted after the final epoch of training. In case
of fully connected layers, the data is simply aggregated and saved as a single data matrix
of shape (samples×#neurons). In case of convolutional layers, this is neither practical nor
possible due to limitations in hardware. Alain and Bengio [1] propose Global Pooling or a
random selection of features to bypass this issue. However, we are afraid that global pool-
ing the entire feature map can potentially bias the data and thus the probe performance as
a result. To mitigate this potential bias, we only adaptive average pool the feature map to
(4× 4× # f ilters). The reduced feature maps are then flattened into a vector and stored as
a data matrix of shape (samples× 42 · # f ilters). We are aware that this method still is not
free of ablation. We study the effects of different downsampling techniques in appendix
A. The result show that this approach has a tolerable impact for our purposes, since the
visual difference in the structure probe performances is very slim compared to less aggres-
sive downsampling strategies. The training test split remains unchanged from the original
data. The probes are logistic regression classifiers minimizing cross entropy using the SAGA
solver implementation of scikit-learn. The logistic regression is fitted for 100 epochs.

C Additional Results
In this section, we present additional results and insights from the experiments presented in
section 4 and 5.

C.1 Feature map downsampling
The resolution of the feature map has a multiplicative effect on the number of computations
required for updating the covariance matrix. Another problem is that the early convolutional
layers yield more data points than later layers for computing the covariance matrix, since
their feature map is larger. To address both issues, we experiment with downsampling the
feature maps using the nearest interpolation. We find that downsampling feature maps such
that the resolution of the feature map never exceed 32×32 a pixel did not visibly change the
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saturation pattern. We did not apply this method in any of the experiments, since we did not
explore the biases induced by this method enough. We include this section only to mention
that this a potential path for making the computations more efficient.

C.2 On-line covariance computation and floating point precision
Another issue when on-line computing a covariance matrix is the precision of floating-
point values. Neural networks are generally processed in full precision. However, for large
amounts of data, the compounding round-off errors induced by the 32-bit precision of the
variables may induce errors. For this reason, all computations concerning saturation are
performed in double precision. This is also true for the PCA-Layers. Before the update of
the covariance matrix is performed, the data is cast in double precision. The running sum,
running squares are double precision float arrays as well.

C.3 Effect of eigenspace projections on the reconstruction of a
convolutional autoencoder

To visualize the effect of projection into the eigenspace, we train an autoencoder on the
Food101 dataset.

C.3.1 Convolutional autoencoder architecture

Encoder Decoder

512 × 512 × 3 Input (3×3) conv, 8 ReLU
(3×3) conv, 16 filters, ReLU upsampling, nearest, scale-factor 2
(2×2) max pooling, strides 2 (3×3) conv, 8 filters, ReLU
(3×3) conv, 8 filters, ReLU upsampling, nearest, scale-factor 2
(2×2) max pooling, strides 2 (3×3) conv, 16 filters, ReLU
(3×3) conv, 8 filters, ReLU upsampling, nearest, scale-factor 2
(2×2) max pooling, strides 2 (3×3) conv, 3 filters, ReLU

Table 5: Convolutional Autoencoder Architecture. All convolutional Layers use same-
padding
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C.3.2 Hyperparameters

Parameter Values

Input Resolution (224×224)
Epoch 50
Batch size 128
Optimizer ADAM
ADAM: beta1 0.9
ADAM: beta2 0.999
ADAM: epsilon 1e-8
ADAM: learning rate 0.0001

Table 6: Hyperparameters for the convolutional autoencoder.
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C.3.3 Reconstruction examples for different values of δ

To test the effects of convolutional and linear projections.

δ loss Reconstruction

Original -

100% 0.033

99.9% 0.065

99.5% 0.089

99% 0.120

95% 0.216

90% 0.234

Table 7: Reconstruction examples for different values of δ . PCA is applied on all convolu-
tional layers.
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δ dimEk
encoding loss Reconstruction

Original - -

100% 8192 0.033

99.9% 4374 0.035

99.5% 1332 0.049

99% 597 0.062

95% 17 0.148

90% 1 0.222

Table 8: Reconstruction examples for different values of δ . PCA is applied on the fully
connected encoding layer.
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C.4 Probe performances and saturation patterns of ResNet18 and 34
with disabled skip-connections trained on CIFAR10

Figure 9: ResNet18 without Skip connections trained on CIFAR10 with 32×32 pixel input
resolution

Figure 10: ResNet18 without Skip connections trained on CIFAR10 with 224× 224 pixel
input resolution

Figure 11: ResNet34 without Skip connections trained on CIFAR10 with 32×32 pixel input
resolution

Figure 12: ResNet34 without Skip connections trained on CIFAR10 with 224× 224 pixel
input resolution
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C.5 Probe performances and saturation patterns for TinyImageNet

Figure 13: ResNet18 trained on TinyImageNet with 64×64 pixel input resolution

Figure 14: ResNet18 trained on TinyImageNet with 224×224 pixel input resolution

Figure 15: ResNet34 trained on TinyImageNet with 64×64 pixel input resolution

Figure 16: ResNet34 trained on TinyImageNet with 224×224 pixel input resolution
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C.6 Probe performances and saturation patterns for MNIST

Figure 17: VGG16 trained on MNIST width 32×32 pixel input resolution

Figure 18: VGG16 trained on MNIST width 224×224 pixel input resolution

Figure 19: ResNet18 trained on MNIST width 32×32 pixel input resolution

Figure 20: ResNet18 trained on MNIST width 224×224 pixel input resolution
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Figure 21: ResNet34 trained on MNIST width 32×32 pixel input resolution

Figure 22: ResNet34 trained on MNIST width 224×224 pixel input resolution
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C.7 Collages of VGG and ResNet-style models

Figure 23: Similar VGG-style models trained on CIFAR10. The model are altered in depth,
filter size and input size. Their basic architecture however stays the same. The slim version
of of the models has all filter sizes reduced by a factor of 8.

Figure 24: Similar ResNet-style models trained on CIFAR10. The models are altered in
depth, filter size and input size. Their basic architecture however stays the same. The slim
version of the models has all filter sizes reduced by a factor of 8.
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Figure 25: Layer-wise saturation of all tested CNN architectures trained on CIFAR10 for 30
epochs in the configuration for Section 3.3. The input resolution is (32× 32) pixels for all
models. The layers are represented on the x-axis in the same sequence as the information is
propagated through the network at inference time. The y-axis describes the saturation value.
Note the gradual change in the distribution while the number of filters and depth increase.
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C.8 Full t-Test tables of VGG11, VGG13, VGG16 and ResNet18

Explained σ Mean difference sample σ t-stat p-value

0.9999 -0.0001 0.0007 -0.714 0.487
0.9998 -0.0005 0.0008 -2.44 0.029
0.9997 -0.0007 0.0012 -2.07 0.058
0.9996 -0.0005 0.0018 -1.1 0.292
0.9995 -0.0010 0.0018 -2.16 0.049
0.9994 -0.0008 0.0016 -1.8 0.094
0.9993 -0.0010 0.0015 -2.72 0.017
0.9992 -0.0013 0.0014 -3.65 0.003
0.9991 -0.0011 0.0018 -2.51 0.025
0.999 -0.0015 0.0021 -2.74 0.016
0.998 -0.0019 0.0029 -2.49 0.026
0.997 -0.0013 0.0034 -1.46 0.166
0.996 -0.0009 0.0039 -0.888 0.390
0.995 0.0005 0.0037 0.537 0.600
0.994 0.0022 0.0038 2.2 0.045
0.993 0.0056 0.0071 3.03 0.009
0.992 0.0114 0.0110 4.03 0.001
0.99 0.0260 0.0179 5.61 0.000
0.98 0.1073 0.0253 16.4 0.000
0.97 0.2824 0.0954 11.5 0.000
0.96 0.4356 0.0767 22 0.000
0.95 0.5118 0.0616 32.2 0.000
0.94 0.5658 0.0568 38.6 0.000
0.93 0.6385 0.0476 52 0.000
0.92 0.7070 0.0510 53.7 0.000
0.91 0.7574 0.0240 122 0.000
0.9 0.7727 0.0090 333 0.000

Table 9: Sum of projections in VGG11 (n=15). µ 6= 0 (p<.01) in bold.
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Explained σ Mean difference sample σ t-stat p-value

0.9999 -0.0004 0.0008 -2.42 0.023
0.9998 -0.0005 0.0009 -2.81 0.010
0.9997 -0.0010 0.0010 -5.26 0.000
0.9996 -0.0009 0.0010 -4.92 0.000
0.9995 -0.0011 0.0010 -5.46 0.000
0.9994 -0.0012 0.0012 -4.91 0.000
0.9993 -0.0012 0.0012 -4.83 0.000
0.9992 -0.0013 0.0013 -5.17 0.000
0.9991 -0.0016 0.0015 -5.48 0.000
0.999 -0.0017 0.0016 -5.50 0.000
0.998 -0.0017 0.0022 -3.92 0.001
0.996 -0.0005 0.0030 -0.910 0.371
0.994 0.0037 0.0043 4.45 0.000
0.992 0.0096 0.0062 7.91 0.000
0.99 0.0178 0.0136 6.68 0.000
0.98 0.1123 0.0377 15.2 0.000
0.97 0.2254 0.0578 19.9 0.000
0.96 0.4803 0.1022 24.0 0.000
0.95 0.7026 0.0368 97.3 0.000
0.94 0.7536 0.0227 169 0.000
0.93 0.7654 0.0202 193 0.000
0.92 0.7785 0.0164 242 0.000
0.91 0.7867 0.0143 280 0.000
0.9 0.7929 0.0117 345 0.000

Table 10: Sum of projections in VGG13 (n=26). µ 6= 0 (α = 0.01) in bold.
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Explained σ µdi f f σsample t-stat p-value µSat σSat µ(∑dimEk
l )

0.9999 -0.0003 0.0008 -2.65 0.011 60.0 0.6 2613±102
0.9998 -0.0006 0.0011 -3.31 0.002 54.5 0.6 2268±97
0.9997 -0.0006 0.0014 -2.82 0.008 51.2 0.7 2071±93
0.9996 -0.0003 0.0016 -1.28 0.208 48.8 0.6 1938±88
0.9995 -0.0001 0.0017 -0.352 0.727 47.1 0.7 1841±86
0.9994 0.0007 0.0019 2.18 0.035 45.6 0.7 1766±84
0.9993 0.0009 0.0022 2.62 0.012 44.5 0.7 1705±83
0.9992 0.0012 0.0031 2.42 0.020 43.4 0.7 1653±80
0.9991 0.0016 0.0032 3.14 0.003 42.5 0.7 1608±79
0.998 0.0107 0.0148 4.57 0.000 36.0 0.7 1318±73
0.996 0.0771 0.0585 8.33 0.000 30.0 0.7 1074±67
0.994 0.1873 0.0812 14.6 0.000 26.3 0.7 934±62
0.992 0.2754 0.0822 21.2 0.000 23.7 0.6 837±58
0.99 0.3643 0.0900 25.6 0.000 21.8 0.6 765±54
0.98 0.6176 0.0413 94.6 0.000 16.1 0.5 556±41
0.97 0.6559 0.0386 107 0.000 13.1 0.4 451±32
0.96 0.7008 0.0384 115 0.000 11.2 0.3 385±27
0.95 0.7351 0.0337 138 0.000 9.8 0.3 339±24
0.94 0.7550 0.0265 180 0.000 8.8 0.2 303±21
0.93 0.7639 0.0231 209 0.000 7.9 0.2 275±19
0.92 0.7727 0.0167 293 0.000 7.2 0.2 252±17
0.91 0.7775 0.0143 344 0.000 6.6 0.2 233±16
0.9 0.7796 0.0127 387 0.000 6.1 0.2 215±15

Table 11: Sum of projections in VGG19 (n=40). µ 6= 0 (p<.01) in bold.
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Explained σ µdi f f σsample t-stat p-value µSat σSat µ(∑dimEk
l )

1.0 0.0000 0.0000 nan nan 100.0 0.0 3904±0
0.9999 -0.0002 0.0012 -0.52 0.611 78.5 0.5 2338±87
0.9998 0.0000 0.0013 0.0796 0.938 75.6 0.4 2153±74
0.9997 -0.0002 0.0016 -0.521 0.610 73.9 0.4 2043±67
0.9996 -0.0009 0.0020 -1.66 0.119 72.5 0.4 1963±63
0.9995 -0.0005 0.0022 -0.813 0.430 71.3 0.4 1900±61
0.9994 -0.0006 0.0019 -1.18 0.256 70.4 0.3 1847±57
0.9993 -0.0007 0.0019 -1.48 0.162 69.4 0.4 1802±55
0.9992 -0.0007 0.0022 -1.29 0.217 68.7 0.4 1763±54
0.9991 -0.0006 0.0022 -1.13 0.279 67.9 0.4 1728±52
0.998 0.0031 0.0046 2.63 0.020 62.7 0.3 1493±40
0.996 0.0213 0.0285 2.9 0.012 57.4 0.4 1294±32
0.994 0.0389 0.0454 3.32 0.005 54.0 0.5 1181±28
0.992 0.0579 0.0596 3.76 0.002 51.3 0.5 1100±27
0.99 0.0812 0.0782 4.02 0.001 49.2 0.6 1038±26
0.98 0.1899 0.1042 7.06 0.000 41.7 0.7 841±26
0.97 0.2918 0.1057 10.7 0.000 37.0 0.7 731±26
0.96 0.3649 0.0834 16.9 0.000 33.6 0.6 654±25
0.95 0.4333 0.0757 22.2 0.000 30.9 0.6 595±24
0.94 0.4544 0.0667 26.4 0.000 28.6 0.6 548±24
0.93 0.4787 0.0668 27.7 0.000 26.7 0.6 508±24
0.92 0.4896 0.0638 29.7 0.000 25.1 0.6 475±23
0.91 0.5119 0.0582 34 0.000 23.6 0.6 446±22
0.9 0.5296 0.0574 35.8 0.000 22.4 0.6 421±21

Table 12: Sum of projections in ResNet18 (n=15). µ 6= 0 (p<.01) in bold.
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D Tail Patterns on various Architectures and Datasets
In this section, we will provide additional tail patterns that were observed during experi-
ments. The black vertical bar in some of these plots marks the first layer with the receptive
field size of the input greater than the input resolution. We find that this property predicts un-
productive sequences of layers well for sequential architecture like the VGG-network family
but not when more than one pathway is present (for example skip or dense connections). The
experiments use the same experimental setup described in appendix section 4.3.

D.1 Different Types of Tail Patterns - A brief explanation
We find that saturation is subject to noise induced by certain features of the neural architec-
ture like the increase or decrease in filters from layer to layer, the use of 1×1 convolutions
and downsampling layers are common culprits for zig-zag-like behavior or sudden dips and
spikes in saturation, an example for the latter is DenseNet18 in figure 26 (b). It has to be
stressed that these factors are not random or create non-reproducible perturbations. Instead,
they usually result in anomalous patterns that a very stable over multiple runs (which is
exemplified in Section 4.1).

Logistic regression probes are considerably more robust against the aforementioned prop-
erties. However, they are influenced by the path the information takes during the forward
pass, revealing different types of tail patterns that can be differentiated based on the pro-
cessing in the tail-layers. The three examples found commonly are exemplified in figure 26.
These example also give insights into how neural network process information differently,
which is the main reason why we dedicate an additional section to these findings in the ap-
pendix. All the networks are trained on Cifar10 using a 32× 32 pixel input resolution. In
figure 26 (a) we find a pass-through tail, where the layers process the information but do not
advance the quality of the intermediate solution. We find this type of tail pattern is typical
for sequential neural networks (which you can see from other results in appendix C.4, C.6)
and C.5). The second type of tail, depicted in figure 26 (b), is caused by the multiple path-
ways inside the DenseBlock of DenseNet. Information can pass from any previous layer to
the current layer within the DenseBlock, effectively allowing the information to skip layers.
When layers are skipped, the intermediate solution quality degrades and instantaneously re-
covers after the skipped section is over. The latter is apparent in the depicted example by
the high model performance relative to the probe performance of the last DenseBlock layers.
This phenomenon was initially observed on a simple MLP-example by Alain and Bengio
[1]. If necessary, the signal may jump more than a single building block in the architecture.
An example of which can be seen in figure 26 (c) on a ResNet34 architecture. This jumping
is indicated by the zig-zag-pattern in the probe performance, where the higher performing
layer resembles the first and lower performing layer the second layer of a residual block.

This shows that architecture decisions, influencing the potential pathway’s information
can take from input to output, can have a significant influence on the way the model pro-
cesses (or chooses not to process) information. In any case, the semantic of the tail-pattern
remains unchanged, since a skipped layer and an unproductive layer can both be considered
a parameter and computational inefficiency.
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(a) VGG16 tail layers maintain the quality of the intermediate solu-
tion
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(b) The tail of DenseNet18 shows a decay in probe performance, in-
dicating that the last DenseBlock is skipped entirely [1].
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(c) ResNet34 skips most residual blocks in the tail, which is apparent
by the zig-zag pattern in probe performances caused by the starts and
end of skip-connections [1].

Figure 26: Depending on the neural architecture, tail patterns may deviate in their appearance
in probe performance. In sequential architectures (a) the layers maintain the quality of the
intermediate solution. If shortcut connections exist in the architecture, layers may be skipped.
Skipped layers are apparent by their decaying probe performance [1]. This is apparent on
DenseNet18 (b) and ResNet34 (b) where a single DenseBlock and multiple ResiduaBlocks
are skipped respectively. All models are trained on Cifar10 at native resolution.
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D.2 VGG11, 13, 16, 19 - MNIST

/
Figure 27: VGG11 - Mnist - 32×32 input resolution.

/
Figure 28: VGG13 - Mnist - 32×32 input resolution.
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/
Figure 29: VGG16 - Mnist - 32×32 input resolution.

/
Figure 30: VGG19 - Mnist - 32×32 input resolution.
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D.3 VGG11, 13, 16, 19 - TinyImageNet

/
Figure 31: VGG11 - TinyImageNet - 32×32 input resolution.

/
Figure 32: VGG13 - TinyImageNet - 32×32 input resolution.
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/
Figure 33: VGG16 - TinyImageNet - 32×32 input resolution.

/
Figure 34: VGG19 - TinyImageNet - 32×32 input resolution.
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D.4 DenseNet18, 65 - Cifar10
Interestingly, the skipping behavior observable in too deep ResNet-style architectures is not
present in DenseNet-style networks. Instead, the probe accuracy degrades over entire regions
of the network, indicating that these are likely skipped entirely.

/
Figure 35: DenseNet18 - Cifar10 - 32×32 input resolution.

/
Figure 36: DenseNet65 - Cifar10 - 32×32 input resolution.
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D.5 ResNet50 - Cifar10
Tail patterns are present in ResNet 50.

/
Figure 37: ResNet50 - Cifar10 - 32×32 input resolution.

/
Figure 38: ResNet50 (removed stem) - Cifar10 - 32×32 input resolution.
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D.6 Experiments on ImageNet and iNaturalist
This set of experiments is an attempt to recreate the tail pattern phenomenon on ImageNet
and iNaturalist. For these experiments, computing probe performances was not feasible due
to resource limitations. For this reason, only saturation is provided. Each model is trained
two times. Once on the design resolution of 224× 224 pixels of the respective models (for
reference purposes, we do not expect to see a tail pattern at this resolution) and once on
32×32 pixels, which reliably results in tail patterns for these models.
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(a) ResNet18 - ImageNet - 32×32 - Test Accuracy: 25.88%
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(b) ResNet18 - ImageNet - 224×224 - Test Accuracy: 65.63%
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(a) ResNet18 - iNaturalist - 32×32 - Test Accuracy: 12.15%
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(b) ResNet18 - iNaturalist - 224×224 - Test Accuracy: 39.91%

Figure 39: ResNet18 trained on iNaturalist.
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(a) VGG16 - ImageNet - 32×32 - Test Accuracy: 10.13%
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(b) VGG16 - ImageNet - 224×224 - Test Accuracy: 63.96%

Figure 40: VGG16 trained on ImageNet.
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(a) VGG16 - iNaturalist - 32×32 - Test Accuracy: 17.85%
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(b) VGG16 - iNaturalist - 224×224 - Test Accuracy: 52.11%

Figure 41: VGG16 trained on iNaturalist.
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E Source Code
The experiments conducted in this work are done in two distinct repositories. The experi-
ments themselves are conducted with the phd-lab-repository, which can be found here (in-
cluding a manual): https://github.com/MLRichter/phd-lab.

The second repository is called delve and contains the logic for PCA-Layers (see section
3), on-line covariance approximation, as well experiment control. All three features are
used by phd-lab to conduct the experiments in question. This project is currently in the
process of being open sourced, is installable over PyPi and can be found here: https:
//github.com/delve-team/delve.

https://github.com/MLRichter/phd-lab
https://github.com/delve-team/delve
https://github.com/delve-team/delve

