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1 Maximizing Likelihood by Minimizing Mean Square
Error

Let y denote a generic pixel in an image I, and ỹ the respective pixel in the reconstructed
image Ĩ, obtained trough a learned decoding function.

If we assume the reconstruction error, denoted as ε , to be normally distributed (i.e. ε ∼
N

(
0,σ2

)
), then, the predicted value ỹ is normally distributed around the true value y, thus

ỹ∼N
(
y,σ2

)
. Based on this assumption, the probability density function can be defined as:

f
(
ỹ|y,σ2)= 1√

2πσ2
e−

(ỹ−y)2

2σ2 . (1)

Given a set of observations, e.g. the pixels of the image, we maximize the likelihood L as
the product of the probability densities of the observations:

L=
n

∏
i=1

f
(
yi|ỹi,σ

2)= (
2πσ

2)−n/2
e−

∑
n
i=1(yi−ỹi)

2

2σ2 . (2)

Assuming the variance of the error to be independent from the input variables, optimizing
the latter formula is equivalent to optimize:

log
(

L
(2πσ2)−n/2

)
=−∑

n
i=1 (yi− ỹi)

2

2σ2 . (3)
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Table 1: IOB decoders design for the teapot dataset.
Decoder Input Shape→Output Shape Layer Information

Gθ (C)

(1,64,64)→(8,64,64) CONV-(O:8,K:7x7,S:1,P:3), IN, Leaky ReLU
(8,64,64)→(16,32,32) CONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU

(16,32,32)→(32,16,16) CONV-(O:32,K:4x4,S:2,P:1), IN, Leaky ReLU
(32,16,16)→(64,8,8) CONV-(O:64,K:4x4,S:2,P:1), IN, Leaky ReLU

(64,8,8)→(32,16,16) DECONV-(O:32,K:4x4,S:2,P:1), IN, Leaky ReLU
(32,16,16)→(16,32,32) DECONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU
(16,32,32)→(8,64,64) DECONV-(O:8,K:4x4,S:2,P:1), IN, Leaky ReLU

(8,64,64)→(3,64,64) CONV-(O:3,K:7x7,S:1,P:3), Tanh

Gθ (s)

(3)→(256) FC-(O:256)
(256)→(4096) FC-(O:4096), Flatten

(64,8,8)→(32,16,16) DECONV-(O:32,K:4x4,S:2,P:1), IN, Leaky ReLU
(32,16,16)→(16,32,32) DECONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU
(16,32,32)→(8,64,64) DECONV-(O:8,K:4x4,S:2,P:1), IN, Leaky ReLU

(8,64,64)→(3,64,64) CONV-(O:3,K:7x7,S:1,P:3), Tanh

Thus, maximizing the original likelihood function is equivalent to minimizing ∑
n
i=1 (yi− ỹi)

2

that is the scaled Mean Squared Error (MSE). Thus, by training the decoder to minimize
MSE, we train it to maximize the Mutual Information (MI) between z and I.

After training the decoder Gθ (see Sec. 3 of the main manuscript), computing MSE
equivalent to directly measuring the MI. There is a relationship between likelihood and MSE
(shown below), but the likelihood acts as a lower bound to MI.

Relationship MSE - likelihood: Note that if we divide both parts of the equation by n
and then we multiply by −2σ2, we obtain:

n

∑
i=1

(yi− ỹi)
2

n
=−2σ2

n
· log

L
(2πσ2)−n/2 , (4)

that is:

MSE =−2σ2

n
log(L)−σ

2 log(2πσ
2). (5)

Since we assume homoscedastic distributions, i.e. fixed σ2, Equation 5 can be expressed as:

MSE =−a
n

log(L)−b, (6)

where a and b are positive constants.

2 Empirical Study with the Teapot Dataset
Visual examples and qualitative results of the empirical study on the proposed metrics with
the teapot dataset are included in Fig. 1. It is notable that the artifacts in the reconstructed
images introduced by the decoder bias are observed in the results of both decoders and bias
decoders.

3 Model Design and Training Scheme for IOB

For the structure of IOB decoders, we vary the number of layers for different applications
due to the different dimensions of the representations. The design of the decoders for the
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Figure 1: Visuals for the empirical study with the teapot dataset. Top: examples of original
images, ground truth generating factors and segmentation masks. We also show the randomly
sampled content and style representations. Bottom: examples of target images and output
images for the IOB decoders.

teapot dataset, MUNIT, SDNet and PANet can be found in Table 1, 2, 3 and 4. The notations
in the tables are: O: the number of output channels; K: the kernel size; S: the stride size; P:
the padding size; FC: fully-connected layer; IN: instance normalization; Overall, Gθ (s) con-
sists of several linear layers, followed by transpose (upsampling steps) and one plain CONV
layer that generates the final image. Gθ (C) follows an autoencoder structure with several
encoder and decoder CONV layers. For the teapot dataset, the content representation has
size 1×64×64 and the style representation has size 3. For MUNIT, the content representa-
tion has size 128× 64× 64 and the style representation has size 8. For SDNet, the content
representation has size 8×224×224 and the style representation has size 8. For PANet, the
content representation has size 3×64×64 and the style representation has size 1024. Note
that it is not necessary to have exactly same design as in the tables, where the key suggestion
is to design the decoders to generate as high-quality as possible reconstructed images.

All the decoders are trained using the Adam optimiser [8] (β1 = 0.5,β2 = 0.999) with a
learning rate of 1e−4 for 40 epochs using batch size 10.

4 Detailed Application Description

Table 5 summarizes the design and learning biases of the methods presented in Sec. 5 of
the main manuscript. Note that the biases are reported as modules, without indicating the
way they are used in our experiments (e.g. AdaIN is reported without specifying that it is
removed from the original MUNIT, but is added to PANet as a variant).
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Table 2: IOB decoders design for MUNIT.
Decoder Input Shape→Output Shape Layer Information

Gθ (C)

(128,64,64)→(128,64,64) CONV-(O:128,K:7x7,S:1,P:3), IN, Leaky ReLU
(128,64,64)→(128,32,32) CONV-(O:128,K:4x4,S:2,P:1), IN, Leaky ReLU
(128,32,32)→(128,16,16) CONV-(O:128,K:4x4,S:2,P:1), IN, Leaky ReLU
(128,16,16)→(64,32,32) DECONV-(O:64,K:4x4,S:2,P:1), IN, Leaky ReLU

(64,32,32)→(32,64,64) DECONV-(O:32,K:4x4,S:2,P:1), IN, Leaky ReLU
(32,64,64)→(16,128,128) DECONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU

(16,128,128)→(3,128,128) CONV-(O:3,K:7x7,S:1,P:3), Tanh

Gθ (s)

(8)→(256) FC-(O:256)
(256)→(4096) FC-(O:4096)

(4096)→(8192) FC-(O:8192), Flatten
(128,8,8)→(64,16,16) DECONV-(O:64,K:4x4,S:2,P:1), IN, Leaky ReLU

(64,16,16)→(32,32,32) DECONV-(O:32,K:4x4,S:2,P:1), IN, Leaky ReLU
(32,32,32)→(16,64,64) DECONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU
(16,64,64)→(8,128,128) DECONV-(O:8,K:4x4,S:2,P:1), IN, Leaky ReLU

(8,128,128)→(3,128,128) CONV-(O:3,K:7x7,S:1,P:3), Tanh

Table 3: IOB decoders design for SDNet.
Decoder Input Shape→Output Shape Layer Information

Gθ (C)

(8,224,224)→(8,224,224) CONV-(O:8,K:7x7,S:1,P:3), IN, Leaky ReLU
(8,224,224)→(16,112,112) CONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU

(16,112,112)→(32,56,56) CONV-(O:32,K:4x4,S:2,P:1), IN, Leaky ReLU
(32,56,56)→(64,28,28) CONV-(O:64,K:4x4,S:2,P:1), IN, Leaky ReLU
(64,28,28)→(128,14,14) CONV-(O:128,K:4x4,S:2,P:1), IN, Leaky ReLU

(128,14,14)→(64,28,28) DECONV-(O:64,K:4x4,S:2,P:1), IN, Leaky ReLU
(64,28,28)→(32,56,56) DECONV-(O:32,K:4x4,S:2,P:1), IN, Leaky ReLU
(32,56,56)→(16,112,112) DECONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU

(16,112,112)→(8,224,224) DECONV-(O:8,K:4x4,S:2,P:1), IN, Leaky ReLU
(8,224,224)→(1,224,224) CONV-(O:1,K:7x7,S:1,P:3), Tanh

Gθ (s)

(3)→(256) FC-(O:256)
(256)→(4096) FC-(O:4096)

(4096)→(25088) FC-(O:25088), Flatten
(128,14,14)→(64,28,28) DECONV-(O:64,K:4x4,S:2,P:1), IN, Leaky ReLU

(64,28,28)→(32,56,56) DECONV-(O:32,K:4x4,S:2,P:1), IN, Leaky ReLU
(32,56,56)→(16,112,112) DECONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU

(16,112,112)→(8,224,224) DECONV-(O:8,K:4x4,S:2,P:1), IN, Leaky ReLU
(8,224,224)→(1,224,224) CONV-(O:1,K:7x7,S:1,P:3), Tanh

4.1 MUNIT for Image-to-Image Translation
Multimodal Unsupervised Image-to-image Translation (MUNIT) [7] does not impose strict
constraints on the learned representations, and achieves disentanglement with both design
and learning biases.

The basic assumption is that multi-domain images (a necessary data bias), share common
content information, but differ in style. A content encoder maps images to multi-channel
feature maps, by removing style with IN layers [6] (design bias). A second encoder extracts
global style information with fully connected layers and global pooling. Finally, style and
content are combined in a decoder with AdaIN modules [6] (design bias).

Disentanglement is additionally promoted with a bidirectional reconstruction loss [14]
that enables style transfer. In order to learn a smooth representation manifold, two LR losses
(learning bias) are applied on content and style extracted from input images: content LR
penalizes the distance to the content extracted from reconstructed images, whereas style LR
encourages encoded style distributions to match their Gaussian priors. Finally, adversarial
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Table 4: IOB decoders design for PANet.
Decoder Input Shape→Output Shape Layer Information

Gθ (C)

(3,64,64)→(16,64,64) CONV-(O:16,K:7x7,S:1,P:3), IN, Leaky ReLU
(16,64,64)→(32,32,32) CONV-(O:32,K:4x4,S:2,P:1), IN, Leaky ReLU
(32,32,32)→(16,64,64) DECONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU
(16,64,64)→(8,128,128) DECONV-(O:8,K:4x4,S:2,P:1), IN, Leaky ReLU

(8,128,128)→(3,128,128) CONV-(O:3,K:7x7,S:1,P:3), Tanh

Gθ (s)

(1024)→(1,32,32) Flatten
(1,32,32)→(16,64,64) DECONV-(O:16,K:4x4,S:2,P:1), IN, Leaky ReLU

(16,64,64)→(8,128,128) DECONV-(O:8,K:4x4,S:2,P:1), IN, Leaky ReLU
(8,128,128)→(3,128,128) CONV-(O:3,K:7x7,S:1,P:3), Tanh

Table 5: Overview of the design and learning biases that are investigated in the context
of the three investigated vision tasks: a) image-to-image translation (MUNIT), b) medical
segmentation (SDNet), and c) pose estimation (PANet).

MUNIT SDNet PANet

Design Bias

AdaIN
√ √

Instance √
Normalization

SPADE
√

Binarization
√

MLP
√

Learning Bias

Latent √ √
Regression

KL Divergence
√

Equivariance
√

learning encourages realistic synthetic images.

4.2 SDNet for Medical Image Segmentation

SDNet [4] is a semi-supervised framework that disentangles medical images in anatomical
features (content) and imaging-specific characteristics (style). Similarly to other models,
SDNet uses separate content and style encoders, but here a segmentation network is applied
on the content features trained with supervised objectives and annotated images (data bias).

However, in contrast to MUNIT, SDNet does not impose a design bias on the encoder,
but rather on the content which is represented as multi-channel binary maps of the same
resolution as the input (design bias).

This is obtained with a softmax and a thresholding function with the straight-through
operator [2], such that any style is removed from the content. To encourage style features
to encode residual information (and not content), a loss enforces the style representation to
approximate a standard Gaussian, following the VAE formulation [9] (learning bias). In
this setup, any information encoded in style comes at a cost, and thus encoding redundant
information is prevented [1]. Furthermore, a LR loss of the style is employed to prevent
posterior collapse of the decoder (learning bias).

Finally, style and content are combined to reconstruct the input image by applying a se-
ries of convolutional layers with feature-wise linear modulation (FiLM) conditioning. Simi-
larly to AdaIN, FiLM modules are restrictive, allowing the style only to normalize the con-
ditioned feature maps, and thus further discouraging the style from encoding content infor-
mation (design bias).
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4.3 PANet for Pose Estimation
For the pose estimation task, we consider a dual-stream autoencoder denoted as PANet [11].
PANet consists of two branches that decouple pose (content) and appearance (style) but
employs heavily entangled encoders-decoders.

The content is represented as a multi-channel feature map, where each channel corre-
sponds to a specific body part (since the number of parts are fixed, this imposes a strong data
bias). A Gaussian distribution is applied to each feature map to remove any style informa-
tion, whilst also preserving the spatial correspondence (design bias).

The corresponding style information is extracted from the encoder features using average
pooling (design bias). More critically, style vectors do not correspond to global image style,
since they are applied to specific content parts during decoding (design bias).

Finally, disentanglement is encouraged with a transformation equivariance loss (learning
bias). This ensures that the spatial transformations, such as translations and rotations, affect
only the content, while the intensity ones, such as the color and texture information, affect
only the style.

5 SYNTHIA-Cityscapes Description and MUNIT
Training Setup

Data. We use SYNTHIA [13], which consists of over 20,000 rendered images and corre-
sponding pixel-level semantic annotations, where 13 classes of objects are labeled for aiding
segmentation and scene understanding problems. We also use Cityscapes [5], which con-
tains a set of diverse street scene stereo video sequences and over 5k frames of high-quality
semantic annotations, where 30 classes of instances are labeled in the segmentation masks.

Training setup. MUNIT achieves unsupervised multi-modal image-to-image translation
by minimizing the following loss function:

Ltotal = LGAN +λ1Lrec +λ2Lc−rec +λ3Ls−rec, (7)

where Lrec is the image reconstruction loss, Lc−rec and Ls−rec are the content and style re-
construction losses, and λ1 = 10, λ2 = 1 are the hyperparameters used by the authors in [7].

6 ACDC Description and SDNet Training Setup
Data. We use data from the Automatic Cardiac Diagnosis Challenge (ACDC) [3], which
contains cardiac cine-MR images acquired from different MR scanners and resolution on
100 patients. Images were resampled to 1.37 mm2/pixel resolution and cropped to 224×224
pixels. Manual segmentations are provided for the left ventricular cavity, the myocardium
and right ventricle in the end-systolic and end-diastolic cardiac phases. In total there are
1920 images with manual segmentations and 23,530 images with no segmentations.

Training setup. SDNet is trained by minimizing the following loss function:

Ltotal = λ1LKL +λ2Lseg +λ3Lrec +λ4Lzrec , (8)

where LKL is the KL Divergence measured between the sampled and the predicted style
vectors, Lrec is the image reconstruction loss, Lseg is the anatomy segmentation loss, and
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Figure 2: Detailed representation of the SPADE decoder [12] in the context of SDNET [4].
Style is denoted as S, while CONV represents the convolution operation. Note that γ and β

parameters are applied to the normalized style activations through element-wise multiplica-
tion and addition, respectively.

Lzrec is the LR loss between the sampled and the re-encoded style vector. λ1 = 0.01,λ2 =
10,λ3 = 1, and λ4 = 1 are the hyperparameters used by the authors in [4].

6.1 SPADE Decoder

As described in Sec. 5 of the main manuscript, SDNet relies on a FiLM-based decoder to
combine the content and style information and reconstruct the input image. The key charac-
teristic of FiLM is that it gradually adds style information to the content-based reconstruction
process. Additionally, an alternative approach for combining the content and style features
is investigated, by using a SPADE decoder [12] to further expose the design bias added by
the decoder architecture.

A SPADE block receives the content channels and projects them onto an embedding
space using two convolutional layers to produce the modulation parameters (tensors) γ and
β . These parameters are then used to scale (γ) and shift (β ) the normalized activations
of the style representation. We utilize multiple SPADE blocks to fuse content and style
information at different levels of granularity during decoding. A schematic of the utilized
SPADE decoder in the context of SDNet is depicted in Fig. 2.

Table 6: Comparative evaluation of SDNet [4] variants on the ACDC [3] dataset with 100%
annotation masks, using the proposed metrics. The Dice Score metric is used to measure the
performance in terms of semantic segmentation.

Learning Bias Design Bias

SDNet Original w/o KLD w/o
SPADE

Model and Latent Regression Binarization
DC(C, S) (↓) 0.48 0.57 0.43 0.59
DC(I, C) (↑) 0.97 0.95 0.97 0.94
DC(I, S) (↑) 0.44 0.53 0.44 0.57
IOB(I, C) (↑) 5.66 3.86 6.21 5.63
IOB(I, S) (↑) 0.99 0.96 1.00 1.02
Dice Score (↑) 0.82 0.81 0.82 0.83
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6.2 Medical Segmentation (100% Annotations)
In Sec. 5.2 of the main manuscript, we present the results of the SDNet model variants trained
with minimal supervision, using only the 1.5% of the provided ACDC [3] annotations. Here,
we provide the results for the same experiment but using the 100% of the provided annota-
tions. From the results reported in Table 6, it can be seen that when using strong inductive
biases, such as the supervised losses in this experiment, the degree of disentanglement does
not significantly affect the segmentation performance (utility).

7 DeepFashion Description and PANet Training Setup
Data. We use DeepFashion [10], a large-scale dataset with over 800,000 diverse images of
people in different poses and clothing, that also has annotations of body joints. We only used
full-body images, specifically 32k images for training and 8k images for testing.

Training setup. PANet is trained in an unsupervised way with the following loss func-
tion:

Ltotal = λ1Lrec +λ2Lequiv, (9)

where Lrec is the mean absolute error between the reconstructed and the input image. Lequiv
is an equivariance cost, that ensures that the mean and covariance of the parts coordinates
don’t change after some style transformation. Based on the implementation details presented
in [11], we set λ1 = λ2 = 1.

8 Metrics Correlation and Disentanglement-performance
Trade-off

As noted in Sec. 3 of the main manuscript, we report that the proposed metrics are uncorre-
lated with each other. Here, we present the Pearson correlation computed between disentan-
glement and performance metrics for each of the investigated models. Intuitively, contrary to
the desired low (or no) correlation between disentanglement metrics across all models (see
Fig. 3), we would expect that the performance metric(s) of each application would be corre-
lated with at least one DC or IOB variant. In fact, this correlation can be exploited to find the
“sweet spot" between disentanglement and performance. Fig. 4 confirms our intuition for

Figure 3: Pearson correlation coefficients of the proposed metrics across all models visual-
ized as a heatmap. Values close to 1 and -1 indicate a strong correlation.
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Figure 4: Pearson correlation of the proposed metrics across all applications/models visual-
ized as heatmap. Values close to 1 and -1 indicate strong correlation.

all investigated models, highlighting the strong correlation of FID and LPIPS in the MUNIT
scenario, which is the only model that utilizes both C and S directly in the main task, i.e. I2I
translation, and not in any parallel one.

9 Qualitative Evaluation

We visualize the content and style representations in order to reason about their interpretabil-
ity. We consider the content semantic if distinct objects appear in different channels, whereas
the style is semantic when images reconstructed while traversing the style manifold between
two points have smooth appearance changes, and are realistic.

As an extension of the samples presented and discussed in Sec. 5.4 of the main manuscript,
here we provide visualizations for all model variants. In particular, Figs. 5 and 6 depict sev-
eral channels of content, as well as style traversals for different MUNIT and SDNet model
variants, respectively. However, Fig. 7 presents solely content representations, as PANet
does not assume a prior distribution on the style latent vector, thus style traversals are not
possible. When interpolating between two style vectors, the originally proposed MUNIT
produces realistic images, and smooth appearance changes. Instead, removing the LR con-
straint affects the image quality. Similarly, the original SDNet presents high image quality
and smooth transitions, while removing the content Binarization leads to low intensity (style)
diversity.
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Figure 5: MUNIT: Qualitative examples to assess the interpretability of the content and style
representations of the investigated model variants for different biases. For each variant, we
show 8 channels of the content and 7 indicative style traversals and the difference between
the first and last traversal images. The input image is depicted at the top left of the figure.
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Figure 6: SDNet: Qualitative examples to assess the interpretability of the content and style
representations of the investigated model variants for different biases. For each variant, we
show 8 channels of the content and 7 indicative style traversals and the difference between
the first and last traversal images. The input image is depicted at the top left of the figure.
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Figure 7: PANet: Qualitative examples to assess the interpretability of the content and style
representations of the investigated model variants for different biases. For each variant, we
show 8 channels of the content. Note that since PANet does not assume a prior distribution
on the style, no style are shown. The input image is depicted at the top left of the figure.


