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This supplementary material provides more details and results that are not included in the
main paper due to the space limitations. The contents are organized as follows:

Section A gives more insights and discussions on our system design; Section B presents
additional quantitative results; more examples of the LOD dataset are provided in Section
C, and Section D shows more visual results on our LOD dataset. It’s worth noting that we
have also created a video to help the readers better perceive the performance of our low-light
detection system against other representative competing methods. The video file has been
attached with this supplementary document.

A More Discussion on System Design.

Al Why RAW?

More detailed comparison results about analysis of RAW-input for low-light detection are
shown in Table I and Figure I, which extends Table 1 in the main paper. By further comparing
the performance of CenterNet [15] trained on either brightened RGB-dark (by digital gains) or
RAW-dark images from LOD dataset respectively, we can see nearly +5% AP gain can still be
obtained by using RAW images as inputs, further verifying the advantage of the RAW-input
detector design for low-light object detection.

A.2 Noise injection in the low-light synthetic pipeline.

Based on our low-light synthetic pipeline in Figure II, we further compare different kinds of
noise models (i.e., Gaussian, Poissonian-Gaussian [2, 3] and Physics-based noise model [13])
for noise injection. As shown in Table II, we can find that the physics-based noise model could
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yield better results than other noise models, suggesting the effectiveness of our implementation
for noise injection.

Table I: The performance of CenterNet on the short-exposure SRGB and RAW images from
our LOD, in which the training and testing are executed on the same data type. “RGB-dark"
is the short-exposure SRGB data type, “RGB-dark*" is the brightened short-exposure SRGB
data type, “RAW-dark" is the short-exposure RAW data type.

Data type AP APy 5 APy 75
RGB-dark 37.6 59.0 40.2
RGB-dark* 40.3 59.7 44.0
RAW-dark 44.7 67.9 49.0

A.3 Low-light recovery module (LRM) design.

Here, we discuss the architecture choice of our LRM. To verify the superiority of the LRM
architecture adopted in the main paper, we replace it with another commonly used architecture
for low-light enhancement (i.e., UNet-style architectures), and then augment it into the
CenterNet [15] backbone (DLA-34 [14]). As shown in Table III, the result shows that our
proposed architecture outperforms all other architectures for LRM in terms of detection
accuracy, which further endorses the superiority of our designed system. This extends Table 2
of the main paper.

A.4 Evaluation of loss functions for training LRM.

We also evaluate some classical alternative loss functions to determine the best choice in the
LRM module. As shown in Table IV, our baseline is the widely used L, (MSE) loss, but
replacing the L, loss by L; produces better image enhancement results (higher PSNR/SSIM)
and further improves the detection performance (higher AP) of our overall low-light detection
system. Moreover, we find that combining L; loss and perceptual loss leads to the best
result. Similar findings are also established in the Ours-cascade approach, but its performance
is always worse than the LRM counterpart. These results also imply there is a positive
correlation between the auxiliary recovery quality (in terms of PSNR/SSIM) and the final
detection accuracy. This extends Table 2 in the main paper.

B More Quantitative Results.

B.1 Upper bound of our proposed approach on the LOD dataset.

The LOD dataset contains long and short-exposure images in RAW and sRGB formats with
annotations. Hence we could evaluate the results of detecting objects directly based on the
long-exposure normal-light images to see the performance gap between short-exposure low-
light inputs and long-exposure normal-light inputs. Table V (row 2 and 4) shows the AP gap
between detecting on low-light and normal-light images is pretty large (11.9% AP), indicating
the difficulty of low-light detection. Besides, we find (in row 1 and 2) that RAW-input also
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RGB-dark RGB-dark* RAW-dark Reference

(a) Visual analysis of RAW-input on our LOD dataset. RGB-dark* is that the brightened short-exposure SRGB
format image.
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(b) Visual comparison from the ablation study of low-light synthetic pipeline that trained with and without
unprocessing and noise injection operation(s) (based on COCO dataset).

Ours w/o LRM Ours w. LRM _ Reference

(c) Visual comparison from the ablation study of our complete low-light detection
system that trained with and without LRM (based on COCO dataset).

Figure I: Visual results of ablation study.
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Figure II: Tllustration of our low-light synthetic pipeline.

Table II: Quantitative analysis of noise injection model using CenterNet. “Gaussian" is the
Gaussian noise model, “Poissonian-Gaussian" is the Poissonian-Gaussian noise model [3],
“Physics-based" is the physics-based noise model [13].

Training Set | Noise Injection Model AP APys  APg7s
None 34.5 52.5 36.1
LOD Gaussian 38.0 60.5 39.8
Poissonian-Gaussian 39.7 62.9 42.3
Physics-based 42.3 66.2 46.0
None 25.2 41.1 26.5
Gaussian 26.4 50.2 25.5
coco ] Poissonian-Gaussian 27.2 50.9 27.8
Physics-based 30.7 49.4 34.2
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Table III: Quantitative analysis of low-light recovery module architecture. The CenterNet with
various LRM architectures are trained on LOD dataset to assess performance improvements.

Module Architecture AP APy 5 APy 75
None 42.3 66.2 46.0
U-net [10] 42.6 67.8 46.4
U-net + Channel attention [6] 43.5 69.1 47.0
LRM (Ours) 44.9 71.5 46.7

Table IV: Quantitative evaluation of different loss functions used for training LRM and our
cascade approach.

Training Set Method Loss Function PSNR  SSIM AP
Ours-cascade Ly 27.36 0.738 | 44.0

Ly + perceptual 27.49 0.740 44 .4

LOD Ours L 27.27 0.730 | 443
(LRM) Ly 27.58 0.744 | 44.7

Ly + perceptual 27.73 0.747 44.9

helps improve the detection precision (+1.5% AP) when performing detection on normal-light
images.

Table V: Upper bound of detection precision on our LOD dataset using CenterNet.

Dataset | Training Format  Testing Format AP APsg  APy5
RGB-normal RGB-normal 55.1 71.9 62.2
RAW-normal RAW-normal 56.6 78.5 62.5
RAW-normal RAW-dark 35.8 57.6 38.5

RAW-dark RAW-dark 44.7 67.9 49.0

LOD

B.2 Method comparisons under the finetuning setting.

In Table 3 of the main paper, we assume the LOD dataset is never seen by any methods
during training to unbiasedly justify the low-light detection performance in the uncontrolled
real world. Here, we present the results under a new setting where the LOD training data
is available for finetuning. The proposed approach is compared against the best two-step
"enhance-then-detect" method (REDI [8]) in the main paper under this new setting. Specif-
ically, for REDI, we finetune the detector based upon the enhanced low-light images from
LOD training set; for ours, the detector is trained end-to-end using LOD training set. As
shown in Table VI, our method (Ours*) still outperforms the two-step approach (REDI*) by a
wide margin.

C More examples of LOD Dataset.

More examples of annotated images in our newly collected Low-light Object Detection
(LOD) dataset are shown in Figure III. We emphasize that our dataset contains both indoor
and outdoor images, and most images contain multiple instances and are a mixture of different
objects. This extends Figure 4 in the main paper.
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Table VI: Quantitative comparison of our method with the best two-step method (REDI) when the
LOD training set is used for finetuning. The results finetuned on LOD are denoted by *, and the results
using COCO data only (as in the main paper) are also shown as reference (w/o *).

Detector Method AP APs AP75
None 12.7 194 14.1

REDI [8] 26.2 35.1 28.8

CenterNet REDI* 29.9 45.8 31.1
Ours 30.7 49.4 34.2

Ours* 44.7 67.9 49.0

Figure III: More visual examples of our low-light object detection (LOD) dataset.

D More Qualitative Results.

D.1 Visual results of ablation studies.

Some visual results of ablation studies are provided in Figure I to further assess the perfor-
mance of each operation and component. It can be seen that all operations and components
in our low-light detection system help improve the detection performance and detect more
objects. This complements Table 1 and Table 2 of the main paper.

D.2 Visual results of competing methods.

More visual comparison results on our LOD dataset images are shown in Figure IV. We
compare our methods against representative two-step “Enhance-then-Detect” methods in very
low light. It can be seen that all compared methods fail to restore the very low-light images
and further provide perfect detection results, but our method accurately detects more objects.

This extends Figure 5 of the main paper.
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CN [15]

ZD [5] SID [1] REDI [8] Ours Ref

CN [15] GN [11] RN [12]

CN [15]
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Figure IV: Visual comparison on our LOD dataset. (Please zoom in to see details.)
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