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Supplementary Materials - Leveraging Class Hierarchies
with Metric-Guided Prototype Learning

6 Notebook and illustration

In Figure 5, we represent the embeddings and prototypes generated by variations of our net-
works as well as their respective performance. We note that the fixed prototypes approach
performs significantly worse than our metric-guided method. We observe that the resulting
prototypes are more compact when they are learned independently, which can lead to an
increase in misclassification. We also remark that when the hierarchy contains no useful
information, such as the arbitrary order of digits, the metric-based approach has a worse per-
formance than the free (unguided) method. This is particularly drastic for the fixed prototype
approach.

An illustrated notebook to reproduce this figure can be accessed at the following URL:

https://colab.research.google.com/drive/1VoQfBx5q5lWFev0cw
xLZ0qQOZU7Rlmb_#offline=true&sandboxMode=true

To run this notebook locally, you can also download it from our repository:
https://github.com/VSainteuf/metric-guided-prototypes-pytorc
h.

7 Additional methodological details

7.1 Scale-Independent Distortion

Computing the scale-free distortion defined in Equation 5 amounts to finding a minimizer of
the following function f : R 7! R:

f (s) = Â
i2I

|sai �1| , (8)

with ak,l = d(pk,pl)/D[k, l], and I an ordering of {k, l}k,l2K2 such that the sequence [ai]i2I
is non-decreasing.

Proposition 1. A global minimizer of f defined in (8) is given by s? = 1/ai with i defined
as:

i = min

(
j 2 I | Â

k j
ak � Â

k> j
ak .

)
(9)

Proof. First, such i exists as it is the smallest member of a discrete, non-empty set (contain-
ing at least j = |I|). We now verify that s? = 1/ai is a critical point of f . By definition of i
we have that Âki ak � Âk>i ak and Âk<i ak < Âk�i ak. By combining these two inequality,
we have that

�Â
k<i

ak +Â
k>i

ak 2 [�ai,ai] . (10)

https://colab.research.google.com/drive/1VoQfBx5q5lWFev0cwxLZ0qQOZU7Rlmb_#offline=true&sandboxMode=true
https://colab.research.google.com/drive/1VoQfBx5q5lWFev0cwxLZ0qQOZU7Rlmb_#offline=true&sandboxMode=true
https://github.com/VSainteuf/metric-guided-prototypes-pytorch
https://github.com/VSainteuf/metric-guided-prototypes-pytorch
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(a) Cross entropy, ER= 15.2%
distovis = 0.47, distoabs = 0.61
AHCvis = 0.81, AHCabs = 0.65

(b) Learnt prototypes, ER= 14.2%
distovis = 0.42, distoabs = 0.58
AHCvis = 0.75, AHCabs = 0.50

(c) Guided prototypes, ER= 12.8%
distovis = 0.22 AHCvis = 0.56

(d) Fixed prototypes, ER= 21.5%
distovis = 0.17 AHCvis = 0.82

(e) Guided prototypes, ER= 16.9%
distoabs = 0.24 AHCabs = 0.54

(f) Fixed prototypes, ER= 48.8%
distoabs = 0.00 AHCabs = 0.80
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Figure 5: Mean class representation , prototypes , and 2-dimensional embeddings
learnt on perturbed MNIST by a 3-layer convolutional net with six different classification
modules: (a) cross-entropy, (b) learnt prototypes, (c) learnt prototypes guided by a visual
taxonomy, (d) fixed prototypes (see Section 8.2) from a visual taxonomy , (e) learnt pro-
totypes guided by the numbers’ values, and (f) fixed prototypes from the numbers’ values.
The visual hierarchy is represented in (g) and the numerical order in (h). AHCvis corre-
sponds to the cost defined by our proposed visual hierarchy, while AHCabs is defined after
the chain-like structure obtained when organizing the digits along their numerical values.
While embedding the metric with prototypes prior to learning the representations leads to
lower (scale-free) distortion, this translates into worst performance in terms of AHC and ER.
Joint learning achieves better performance on both evaluation metrics. We also remark that
when the hierarchy is arbitrary (e-f), metric guiding is detrimental to precision.
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The subgradient of f at s? is the following:

∂s f (s?) = Â
k<i

∂s |s?ak �1|+Â
k>i

∂s |s?ak �1|+∂s |s?ai �1| (11)

=�Â
k<i

ak +Â
k>i

ak +[�ai,ai]. (12)

By using the inequality defined in Equation 10, we have that 0 2 ∂s f (s?) and hence s? is a
critical point of f . Since f is convex, such s? is also a global minimizer of f , i.e. an optimal
scaling. ⌅

This proposition gives us a fast algorithm to obtain an optimal scaling and hence a scale-
free distortion: compute the cumulative sum of the ak,l sorted in ascending order until the
equality in (9) is first verified at index i. The resulting optimal scaling is then given by 1/ai.

7.2 Smooth Distortion

The minimization problem with respect to s defined in Equation 6 can be solved in closed
form:

s? = Â d(pk,pl)

D[k, l]

�
Â d(pk,pl)2

D[k, l]2
. (13)

7.3 Evolution of Optimal Scaling

Figure 6: Evolution of the scaling factor s⇤ in Ldisto along the training iterations of the four
networks. We observe that s⇤ consistently decreases to values smaller than 1, which allow
the prototypes to spread apart while respecting the fix distances defined by D.

In Figure 6, we represent the evolution of the scaling factor s⇤ in Ldisto during training
of our guided prototype method on the four datasets. Across all four models, s⇤ presents
a decreasing trend overall, which signifies that the average distance between prototypes in-
creases. This is consistent with our analysis of prototypical networks: as the feature learning
network and the prototypes are jointly learned, the samples’ representations get closer to
their true class’ prototype. In doing so, they repel the other prototypes, which translate into
an inflation of the global scale of the problem. Our optimal scaling allows the prototypes’
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scale to expand accordingly. Without adaptive scaling, the data loss (3) and regularizer (6)
would conflict.

In all our experiments, this scale remained bounded and did not diverge. This can be
explained by the fact that for each misclassification k ! l of a sample xn, the representation
f (xn) is by definition closer to the erroneous prototype pl than of the true prototype pk. The
first term of Ldata pushes the true prototype pk towards f (xn), and by transitivity—towards
the erroneous prototype pl . This phenomenon prevents prototypes from being pushed away
from one another indefinitely. However, if the prediction is too precise, i.e. most samples are
correctly classified, the prototypes may diverge. This setting, which we haven’t yet encoun-
tered, may necessitate a regularization such as weight decay on the prototypes parameters.

Lastly, we remark that the asymptotic optimal scalings are different from one dataset
to another. This can be explained foremost by differences in the depth and density of the
class hierarchy of each dataset, as presented in Table 1. As explained above, the inherent
difficulty of the classification tasks also have an influence on the problem’s scale. However,
our parameter-free method is able to automatically find an optimal scaling.

7.4 Inference

As with other prototypical networks, we associate to a sample n the class k whose prototype
pk is the closest to the representation f (xn) with respect to d, corresponding to the class of
highest probability. This process can be made efficient for a large number of classes K and a
high embedding dimension m with a KD-tree data structure, which offers a query complexity
of O(log(K)) instead of O(K ·m) for an exhaustive comparison. Hence, our method does not
induce longer inference time than the cross-entropy for example, as the embedding function
typically takes up the most time.

7.5 Rank-based Guiding

Following the ideas of Mettes et al. [32], we also experiment with a RankNet-inspired loss
[8] which encourages the distances between prototypes to follow the same order as the costs
between their respective classes, without imposing a specific scaling:

Lrank(p) =� 1
|T | Â

k,l,m2T
R̄k,l,m · log(Rk,l,m)+(1� R̄k,l,m) · log(1�Rk,l,m) , (14)

with T = {(k, l,m) 2K3 | k 6= l, l 6= m,k 6= m} the set of ordered triplet of K, R̄k,l,m the hard
ranking of the costs between Dk,l and Dk,m, equal to 1 if Dk,l > Dk,m and 0 otherwise, and
Rk,l,m = sigmoid(d(pk,pl)�d(pk,pm)) the soft ranking between d(pk,pl) and d(pk,pm). For
efficiency reasons, we sample at each iteration only a S-sized subset of T . We use S = 10 in
our experiments.

8 Additional experimental details

We give additional details on our experiments and some supplementary results in the follow-
ing subsections.
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8.1 Competing methods

Hierarchical Cross-Entropy (HXE) Bertinetto et al. [3] model the class structure with
a hierarchical loss composed of the sum of the cross-entropies at each level of the class
hierarchy. As suggested, a parameter a taken as 0.1 defines exponentially decaying weights
for higher levels.

Soft Labels (Soft-labels) Bertinetto et al. [3] propose as second baseline in which the the
one-hot target vectors are replaced by soft target vectors in the cross-entropy loss. These
target vectors are defined as the softmin of the costs between all labels and the true label,
with a temperature 1/b chosen as 0.1, as recommended in Bertinetto et al. [3].

Earth Mover Distance regularization (XE+EMD): Hou et al. [21] propose to account
for the relationships between classes with a regularization based on the squared earth mover
distance. We use D as the ground distance matrix between the probabilistic prediction p and
the true class y. This regularizer is added along the cross-entropy with a weight of 0.5 and
an offset µ of 3.

Hierarchical Inference (YOLO): Redmon and Farhadi [37] propose to model the hierar-
chical structure between classes into a tree-shaped graphical model. First, the conditional
probability that a sample belongs to a class given its parent class is obtained with a soft-
max restricted to the class’ co-hyponyms (i.e. siblings). Then, the posterior probability of a
leaf class is given by the product of the conditional probability of its ancestors. The loss is
defined as the cross-entropy of the resulting probability of the leaf-classes.

Hyperspherical Prototypes (Hyperspherical-proto): The method proposed by Mettes et al.
[32] is closer to ours, as it relies on embedding class prototypes. They advocate to first po-
sition prototypes on the hypersphere using a rank-based loss (see Section 4.6) combined
with a prototype-separating term. They then use the squared cosine distance between the
image embeddings and prototypes to train the embedding network. Note that in our re-
implementation, we used the finite metric defined by D instead of Word2Vec [33] embed-
dings to position prototypes. Lastly, we do not evaluate on S2-Agri as the integration of the
focal loss is non-trivial.

Deep Mean Classifiers (Deep-NCM): Guerriero et al. [16] present another prototype-
based approach. Here, the prototypes are the cumulative mean of the embeddings of the
classes’ samples, updated at each iteration. The embedding network is supervised with Ldata
with d defined as the squared Euclidean norm.

8.2 Numerical results

The numerical values of the results shown in Figure 2 are given in Table 2.

————————————————————-
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(a) Porcupine $ Shrew �80%, Da = 4 (b) Caterpillar $ Lizard �64%, Db = 4

(c) Plate $ Clock �40%, Dc = 4 (d) Streetcar $ Bus +58%, Dd = 4

(e) Otter $ Seal +60%, De = 2 (f) Boy $ Man +78%, D f = 2
Figure 7: Best (a-c) and worse (d-f) improvements in terms of class confusion provided
by Guided-proto compared to the cross-entropy baseline for CIFAR100, given in %, along
with their error cost. The metric guided regularization particularly helps decreasing the
confusions between classes that are visually similar (e.g. Plate and Clock) but are not direct
siblings in the class hierarchy (D = 4). Conversely, the regularization hinders performance
for visually similar siblings classes (e.g. Otter and Seal, D = 2).

8.3 Ablation Studies

Choice of distance : In Table 3, we report the performance of the Guided-proto model
on the four datasets when replacing the Euclidean norm with the squared Euclidean norm.
Across our experiments, the squared-norm based model yields a worse performance. This is
a notable result as it is the distance commonly used in most prototypical networks [16, 45].

Rank-based Regularization: Mettes et al. [32] use a rank-based loss [8] to encourage pro-
totype mappings whose pairwise distance follows the same order as an external qualification
of errors D. We argue that our formulation of Ldisto provides a stronger supervision than
only considering the order of distances, and allows the prototypes to find a more profitable
arrangement in the embedding space. In Table 3, we observe that replacing our distortion-
based loss by a rank-based one results in a slight decrease of overall performance.

Robustness: As shown in Table 4, our presented method has low sensitivity with respect to
regularization strength: models trained with l ranging from 0.5 to 3 yield sensibly equivalent
performances. Choosing l = 1 seems to be the best configuration in terms of AHC.
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Table 2: Error Rate (ER) in % and Average Hierarchical Cost (AHC) on three datasets for our
proposed methods (top) and the competing approaches (bottom). The values are computed
with the median over 5 runs for CIFAR100, the average over 5 cross-validation folds for
S2-Agri, and a single run for NYUDv2 and iNat-19. (HSP: Hyperspherical Prototypes, GP:
Guided Prototypes).

CIFAR100 NYUDv2 S2-Agri iNat-19

ER AHC ER AHC ER AHC ER AHC

Cross-Entropy 24.2 1.160 32.7 1.486 19.4 0.699 40.9 1.993

HXE 24.1 1.168 32.4 1.456 19.5 0.731 41.8 2.013

Soft-label 23.5 1.046 32.4 1.424 19.2 0.703 52.8 2.029

XE+EMD 24.5 1.196 33.3 1.498 19.0 0.687 40.1 1.893

YOLO 26.2 1.214 32.0 1.425 19.1 0.685 42.0 1.942

HSP 29.4 1.472 49.7 2.329 - - 42.4 2.027

Deep-NCM 25.6 1.249 33.5 1.498 19.4 0.702 40.8 1.929

Free-proto 23.8 1.091 32.5 1.462 19.1 0.691 38.8 1.728
Fixed-proto 24.7 1.083 33.1 1.462 19.4 0.710 43.9 2.148

GP-rank 23.3 1.056 32.7 1.445 19.1 0.691 39.3 1.718
GP-disto 23.6 1.052 32.5 1.440 18.9 0.685 38.9 1.721

Hidden prototypes: In cases where the cost matrix D is derived from a tree-shaped class
hierarchy, it is possible to also learn prototypes for the internal nodes of this tree, corre-
sponding to super-classes of leaf-level labels. These prototypes do not appear in Ldata, but
can be used in the prototype penalization to instill more structure into the embedding space.
In Table 4, line leaf-proto, we note a small but consistent improvement in terms of AHC
resulting in associating prototypes for classes corresponding to the internal-nodes of the tree
hierarchy as well.

8.4 Illustration of Results

In Figure 7 and Figure 3, we illustrate that our model particularly improves the classification
rates of classes with high visual similarity and comparatively large error costs.

9 Additional Implementation Details

CIFAR100 ResNet-18 is trained on CIFAR100 using SGD with initial learning rate lr =
10�1, momentum set to 0.9 and weight decay wd = 5 ·10�4. The network is trained for 200
epochs in batches of size 128, and the learning rate is divided by 5 at epochs 60, 120, and
160. The model is evaluated using its weights of the last epoch of training, and the results
reported in the paper are median values over 5 runs.

NYUDv2 We train FuseNet on NYUDv2 using SGD with momentum set to 0.9. The
learning rate is set initially to 10�3 and multiplied at each epoch by a factor that exponentially
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Table 3: Influence of the choice of scaling in Ldisto, metric guiding regularizer, guiding
scheme, and distance function d on the performance of Guided-proto on the four datasets.
For d, we compare the performance of the Euclidean norm, the pseudo-Huberized Euclidean
norm, and the square Euclidean norm.

CIFAR100 NYUDv2 S2-Agri iNat-19
ER AHC ER AHC ER AHC ER AHC

Guided-proto 23.6 1.052 32.5 1.440 18.9 0.685 38.9 1.721
Fixed-scale +0.1 +0.003 0.0 0.000 +0.2 +0.001 +0.9 0.000
Fixed-proto +1.1 +0.031 +0.6 +0.013 +0.5 +0.025 +5.0 +0.427
Rank-based guiding -0.3 +0.004 +0.2 +0.005 +0.2 +0.006 +0.4 -0.003
Squared Norm +1.0 +0.118 0.0 +0.005 +0.6 +0.022 +2.2 +0.233

Table 4: Robustness assessment of guided prototypes on CIFAR100 (left) and S2-Agri
(right). The top line is our chosen hyper-parameter configuration.

CIFAR100 S2-Agri
ER AHC ER AHC

Guided-proto 23.6 1.052 18.9 0.685l = 1, hidden proto,
l = 0.5 -0.2 +0.015 +0.5 +0.019
l = 2 +0.3 +0.013 +0.2 +0.010
l = 3 +0.1 +0.004 +0.1 +0.010
leaf proto only +0.2 +0.015 +0.3 +0.011

decreases from 1 to 0.9. The network is trained for 300 epochs in batches of 4 with weight
decay set to 5 ·10�3. We report the performance of the best-of-five last testing epochs.

S2-Agri We train PSE+TAE on S2-Agri using Adam with lr = 10�3, b = (0.9;0.999) and
no weight decay. The dataset is randomly separated in five splits. For each of the five folds, 3
splits are used as training data on which the network is trained in batches of 128 samples for
100 epochs. The best epoch is selected based on its performance on the validation set, and
we use the last split to measure the final performance of the model. We report the average
performance over the five folds.

iNaturalist-19 Given the complexity of the dataset, we follow [3] and use a ResNet-18
pre-trained on ImageNet. The network is trained for 65 epochs in batches of 64 epochs using
Adam with lr = 10�4, b = (0.9;0.999) and no weight decay. The best epoch is selected
based on the performance on the validation set, and we report the performance on the held-
out test set.

10 Hierarchies used in Experiments

We present here the hierarchy used in the numerical experiments to derive the cost matrix.
We define the cost between two classes as the length of the shortest path in the proposed tree-
shape hierarchy. The hierarchy of CIFAR100 is presented in Figure 8, NYUDv2 in Figure 9,
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Figure 8: Class hierarchy for CIFAR100. The arcs at different radii represent the different
classes of each level of the hierarchy. Unlabelled arcs share the same name as their parent
class.

S2-Agri in Figure 10, and iNat-19 in Figure 11.

For S2-Agri, we built the hierarchy by combining the two levels available in the dataset
S2 of Garnot et al. withwith the fine-grained description of the agricutltural parcel classes
on the French Payment Agency’s website (in French):

https://www1.telepac.agriculture.gouv.fr/telepac/pdf/tas/2
017/Dossier-PAC-2017_notice_cultures-precisions.pdf.

Note that for S2-Agri, following [40] we have removed all classes that had less than 100
samples among the almost 200000 parcels to limit the imbalance of the dataset.
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Figure 9: Class hierarchy for NYUv2
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Figure 10: Class hierarchy for S2-Agri
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Figure 11: Class hierarchy for iNat-19, only the first 6 levels of the hierarchy are represented.
At the time of writing, only the classes’ obfuscated names were publicly available


