
RINGWALD ET AL.: UBR2S FOR UDA – SUPPLEMENTARY MATERIAL 1

UBR2S: Uncertainty-Based Resampling and
Reweighting Strategy for Unsupervised
Domain Adaptation – Supplementary
Material

Tobias Ringwald
tobias.ringwald@kit.edu

Rainer Stiefelhagen
rainer.stiefelhagen@kit.edu

Institute for Anthropomatics and
Robotics (CV:HCI Lab)
Karlsruhe Institute of Technology
Karlsruhe, Germany

1 Introduction
Due to space limitations in the main paper, we provide further experimental results in this
supplementary material. Section 2 describes the employed hyperparameters, network archi-
tectures and training setup. Section 3 provides ablation studies for the ε hyperparameter
and training stability over multiple runs. Section 4 reports results on the Office-31 [19] and
Office-Home [23] datasets in a multi-source UDA setup. Section 5 studies UBR2S’ perfor-
mance w.r.t. different backbone architectures.

Furthermore, we provide additional experimental results on Office-Home [23] and the
VisDA 2017 [15] validation set in Tables 4 and 5. An expanded version of the ablation study
in the main paper can be found in Table 6.

2 Implementation Details
Hyperparameters. All of our experiments are based on the same hyperparameter set and
follow the setup proposed in [17]: We first optimize f and g on the source domain for 1000
iterations using SGD with batch size 240 and learning rate 5× 10−4. For the adaptation
phase, the learning rate is 2.5× 10−4 over 100 cycles with 50 forward passes each cycle
and β=12 (as per [17]). The Monte-Carlo dropout rate is 75% with |M|=50 for all setups.
Experiments involving DSS use ε=0.25 (see Section 3). Our method is implemented in Py-
Torch [14] and trained on four NVIDIA 1080 Ti GPUs.
Network architectures. For Office-Caltech, Office-31 and Office-Home, we utilize ResNet-
50 [4] for comparison to SOTA. For our VisDA 2017 experiments, we use the default ResNet-
101 [4] architecture unless otherwise noted. During the backbone ablation study, we also
employ MobileNetV2 [20] and DenseNet-121 [6]. In any case, all networks are pretrained
on ImageNet [2], use a two layer classifier g (similar to [18]) and the loss described in the
main paper.
Multi-source bins. In multi-source UDA setups with D domains, source bins BS1..D

c (see
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Figure 1: Ablation study for the ε parameter of our proposed domain specific smoothing
(DSS). Results are shown for the VisDA 2017 train→test task and Office-Home’s Pr→Ar
task before (source only) and after the adaptation step.

main paper) are created per-domain. At the start of every cycle, a domain d is chosen
from the available source domains, whose bin BSd

c is then used for the construction of mini-
batches.

3 Ablation Studies

3.1 Hyperparameter ε

In Figure 1, we provide an ablation study for the ε parameter of our proposed domain specific
smoothing (DSS) setup. Results are generated on the VisDA 2017 [15] test set and Office-
Home’s [23] Pr→Ar task after the source only pretraining phase and after the adaptation step
(using the DSSS

Pre, DSSS
Ada setup from the main paper). Setting ε = 0 is equivalent to not

using label smoothing at all (DSS×Pre, DSS×Ada) and thus yields the worst results. In line with
our hypothesis in the main paper, using label smoothing increases the domain adaptation
capabilities. We notice that the results are robust for ε ≥ 0.15 considering both source only
pretraining and the adapted results. Overall, setting ε = 0.25 yields the most consistent
performance for the examined transfer tasks and was hence chosen as basis for our further
experiments.

3.2 Training Stability

In Table 3, we additionally analyze UBR2S’ stability over multiple runs with consecutive
random seeds. Results are reported for the VisDA 2017 [15] train→val and train→test trans-
fer tasks and averaged over 3 runs. Expectedly, the source only pretraining exhibits larger
fluctuations as the model has not been trained on any target domain data at this point. How-
ever, after the adaptation step with UBR2S, results consistently converge towards similar
values with very minor deviations of ±0.3% and ±0.1% accuracy for the validation and test
set respectively. Similar results can also be noted for the VisDA challenge evaluation pro-
tocol metric (mean class accuracy). We thus conclude that our proposed UBR2S method is
also stable over multiple runs with different random seeds.
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4 Multi-source DA
We also evaluate UBR2S in a multi-source domain adaptation setting and report results in Ta-
ble 1. For this, we employ the setup of [1, 27] and report results for Office-31 (D,W→A) and
Office-Home (Ar,Cl,Pr→Rw) in two settings: Source combine merges all available source
domains into a single, larger source domain while the multi-source setup keeps informa-
tion about the source domain affiliation of all source samples available during training.
For Office-31, UBR2S is able to surpass DSBN [1] by 4.4% in the source combine set-
ting and 1.7% in the multi-source setting. For Office-Home, UBR2S is able to outperform
MFSAN [27] by 0.5% and DSBN [1] by 0.9% in the source combine setup. UBR2S does
also exceed MFSAN [27] by 1.7% and the very recent WAMDA [22] method by 1.2% in the
multi-source setup. These results imply that our proposed UBR2S method also has an advan-
tage in multi-source domain adaptation settings and is able to learn from multiple different
source domains at once.

5 Backbone Architectures
One of the key advantages of UBR2S is that it can be applied to any off-the-shelf network.
No additional layers or auxiliary networks (e.g. generators or discriminators) are required.
We therefore also provide results for different network architectures to show UBR2S’ perfor-
mance w.r.t. parameter count. We choose ResNet-50 [4], ResNet-101 [4], DenseNet-121 [6]
and MobileNetV2 [20] for comparison and evaluate on the VisDA 2017 validation set. Pa-
rameter counts and results are depicted in Table 2 as both accuracy and mean class accuracy
as per challenge evaluation protocol.

Most commonly, results are reported using ResNet-50 and ResNet-101. In these cate-
gories, UBR2S is able to outperform very recently proposed methods such as STAR [13],
UFAL [17] and the approach proposed by Li et al. [10]. When comparing ResNet-50 to
ResNet-101 results, we note that UBR2S’ accuracy only drops by 3.2%, even though ResNet-
50 has approximately 19 million fewer parameters. Additionally, even at this reduced param-
eter count, UBR2S is able to outperform the larger ResNet-152 results of SimNet [16] and
GTA [21] by a large margin.

For MobileNetV2 and DenseNet-121, no comparative values exist in literature. However,
it is noteworthy that UBR2S is still able to perform on par with ResNet-50 results at one
third (DenseNet-121) and one tenth (MobileNetV2) of their parameters. We thus show that
UBR2S is indeed applicable to arbitrary off-the-shelf network architectures. This opens up
opportunities for faster research prototyping, lower resource requirements while training and
the option for an accuracy-speed trade-off in deployment scenarios.
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Method Source Combine Multi-Source
D,W→A Ar,Cl,Pr→Rw D,W→A Ar,Cl,Pr→Rw

BN [1] 71.3 81.2 69.9 81.4
WAMDA [22] — — 72.0 82.3
MFSAN [27] 67.6 82.7 72.7 81.8
DSBN [1] 73.2 82.3 75.6 83.0
UBR2S (ours) 77.6 83.2 77.3 83.5

Table 1: Classification accuracy (in %) for different methods when leveraging multiple
source domains of the Office-31 (D, W) and Office-Home (Ar, Cl, Pr) datasets.

Backbone Parameters Method Acc. Mean Acc.

MobileNetV2 2.2×106 UBR2S (ours) 70.1 69.5
DenseNet-121 7.0×106 UBR2S (ours) 77.6 79.5

ResNet-50 23.5×106

GTA [21] 69.5 —
SimNet [16] — 69.6
CDAN+E [12] 70.0 —
TAT [11] 71.9 —
DTA [8] — 76.2
UBR2S (ours) 79.0 79.8

ResNet-101 42.5×106

DSBN [1] — 80.2
DTA [8] — 81.5
STAR [13] — 82.7
Li et al. [10] — 83.3
UFAL [17] 81.8 84.7
UBR2S (ours) 82.2 85.2

ResNet-152 58.1×106 SimNet [16] — 72.9
GTA [21] 77.1 —

Table 2: Classification accuracy and mean class accuracy (in %) for different network archi-
tectures and methods on the VisDA 2017 validation set.

Subset Method aero bicyc bus car horse knife motor person plant skate train truck Mean Acc. Accuracy

Train→Val Source only 59.8±10.9 19.8±7.7 63.4±3.8 72.9±3.3 73.8±2.9 15.6±2.3 81.5±5.1 39.8±8.4 71.7±3.8 31.2±2.5 87.7±0.8 7.8±0.6 52.1±2.4 57.1±1.9
Train→Val UBR2S 97.6±0.2 83.3±1.0 81.7±1.9 70.9±2.7 95.7±0.4 93.3±3.1 89.1±0.6 84.3±1.5 94.8±1.1 91.4±1.5 89.0±0.8 52.8±2.5 85.3±0.2 82.5±0.3
Train→Test Source only 54.4±10.3 10.4±4.4 70.6±3.3 95.3±1.0 61.0±2.5 15.7±3.3 71.3±7.0 27.4±7.8 86.0±2.3 29.5±4.4 84.7±2.3 18.3±0.4 52.1±1.7 54.7±1.6
Train→Test UBR2S 96.6±0.1 88.5±2.1 88.3±0.8 95.2±0.6 92.4±1.2 95.1±2.3 77.5±0.3 78.9±0.4 96.4±1.1 85.4±3.9 93.0±1.2 87.0±2.0 89.5±0.3 89.0±0.1

Table 3: Stability analysis for our final UBR2S method on the VisDA 2017 validation and
test set averaged over 3 runs with consecutive random seeds. Results are obtained with a
ResNet-101 backbone.

Method Ar Cl Pr Rw Avg.Cl Pr Rw Ar Pr Rw Ar Cl Rw Ar Cl Pr

TAT [11] 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8
ETD [9] 51.3 71.9 85.7 57.6 69.2 73.7 57.8 51.2 79.3 70.2 57.5 82.1 67.3
MDDA [24] 54.9 75.9 77.2 58.1 73.3 71.5 59.0 52.6 77.8 67.9 57.6 81.8 67.3
CDAN+TransNorm [26] 50.2 71.4 77.4 59.3 72.7 73.1 61.0 53.1 79.5 71.9 59.0 82.9 67.6
CADA-P [7] 56.9 76.4 80.7 61.3 75.2 75.2 63.2 54.5 80.7 73.9 61.5 84.1 70.2
GSDA [5] 61.3 76.1 79.4 65.4 73.3 74.3 65.0 53.2 80.0 72.2 60.6 83.1 70.3
UFAL [17] 58.5 75.4 77.8 65.2 74.7 75.0 64.9 58.0 79.9 71.6 62.3 81.0 70.4
CAPLS [25] 56.2 78.3 80.2 66.0 75.4 78.4 66.4 53.2 81.1 71.6 56.1 84.3 70.6
UBR2S (ours) 58.3 75.5 78.7 67.8 72.6 71.4 67.0 58.7 79.0 73.7 61.8 82.2 70.6

Table 4: Classification accuracy (in %) for different methods on the Office-Home dataset
with domains Art, Clipart, Product and Real-world.
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Method aero bicyc bus car horse knife motor person plant skate train truck Avg.

Source only 59.1 23.3 59.1 76.1 73.8 15.7 75.7 47.0 70.5 31.6 88.5 7.3 52.3
SimNet-152 [16] 94.3 82.3 73.5 47.2 87.9 49.2 75.1 79.7 85.3 68.5 81.1 50.3 72.9
DSBN [1] 94.7 86.7 76.0 72.0 95.2 75.1 87.9 81.3 91.1 68.9 88.3 45.5 80.2
DTA [8] 93.7 82.8 85.6 83.8 93.0 81.0 90.7 82.1 95.1 78.1 86.4 32.1 81.5
STAR [13] 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
Li et al. [10] 95.7 78.0 69.0 74.2 94.6 93.0 88.0 87.2 92.2 88.8 85.1 54.3 83.3
SE-152 [3] 95.9 87.4 85.2 58.6 96.2 95.7 90.6 80.0 94.8 90.8 88.4 47.9 84.3
UFAL [17] 97.6 82.4 86.6 67.3 95.4 90.5 89.5 82.0 95.1 88.5 86.9 54.0 84.7
UBR2S (ours) 97.5 84.4 81.5 67.9 95.5 89.8 88.7 85.8 93.6 93.0 89.4 55.6 85.2

Table 5: Per class accuracy (in %) for different methods on the VisDA 2017 validation set as
per challenge evaluation protocol. Results are obtained with ResNet-101 unless otherwise
denoted.

DSSPre DSSAda Reweigh S→
Pre

Rval S→Rval S→
Pre

Rtest S→Rtest Ar→
Pre

Cl Ar→Cl Pr→
Pre

Ar Pr→Ar

× × × 50.5 77.9 49.4 78.7 44.0 52.5 51.1 58.1
S × × 52.3 77.5 51.3 82.5 46.0 54.1 54.1 58.8
S S × 52.3 77.9 51.3 83.8 46.0 54.6 54.1 61.8
S T × 52.3 66.3 51.3 67.0 46.0 38.6 54.1 47.5
S S,T × 52.3 65.7 51.3 67.8 46.0 47.4 54.1 53.6
S S SL 52.3 81.4 51.3 85.4 46.0 56.7 54.1 64.1
S S DE 52.3 85.0 51.3 89.5 46.0 57.4 54.1 65.1
S S DE+SL 52.3 85.2 51.3 89.8 46.0 58.3 54.1 67.0

Table 6: Ablation study using ResNet-101 on the VisDA 2017 S→R task (mean class accu-
racy) for both validation and test set as well as ResNet-50 on the Office-Home Ar→Cl and
Pr→Ar tasks (accuracy). Transfer tasks marked with→Pre indicate results after the source only
pretraining and before the adaptation step. The last table row represents our full UBR2S
method.
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