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1 Optimality of GFM

Below, we demonstrate that applying frequency modulation on ∇M is equivalent to the fre-
quency modulation on the optimal mask M∗. We modulate the gradient map in the frequency
domain, G =H(∇M), as follows:

∇M̃ = H̃(OA(G))+ H̃(OB(G)), (1)

WhereOA(G)=A�G andOB(G)=B�G are linear. We now show that the Inverse Discrete
Cosine Transform, H̃, is also linear. H̃ is defined as follows:
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The equation (2) is a matrix multiplication and thus linear. Note that the functions d(·, ·) and
c are defined the same as in the paper. We also know that DCT is invertible and linear, thus
IDCT is also linear [1].

Therefore, the gradient frequency modulation can be summarized as:

∇M̃ = H̃ ◦O◦H(∇M) (3)

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Blinn} 1993



2 XINMIAO, WENTAO, MATTHEW, YU: GFM FOR EXPLAINING VIDEO MODELS

Because H̃,H and O are linear transformations, we have the following gradient ascent rule:

F(M f+1) = F(M f + ε∇M)

= F(M f )+ εF(∇M)
(4)

The equation (4) shows that applying frequency modulation on the gradient map ∇M is
equivalent to frequency modulation on the optimal mask M∗.

2 Additional Ablation Studies Results

rl 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
STC 55.5 58.8 61.9 61.9 62.9 62.7 67.8 63.5

Table 1: Without high frequencies results with model R(2+1)d. The results are the quan-
titative results are the purple circles in the figure 3 of the paper.

rl 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4
rh 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5
STC 61.9 61.9 61.9 61.9 61.9 62.7 61.9 61.8 62.0 62.8 62.8

Table 2: Low and High Frequencies where rl = {0.3,0.4}. This table presents the results
of the using a combination of low and high frequencies on the dataset Epic-Kitchens-Object
and the model R(2+1)D.

rl 0.5 0.5 0.5 0.5 0.6 0.6 0.6
rh 0.1 0.2 0.3 0.4 0.1 0.2 0.3
STC 62.9 62.5 62.1 61.7 62.7 63.0 62.7

Table 3: Low and High Frequencies where rl = {0.5,0.6}. This table presents the results
of the using a combination of low and high frequencies on the dataset Epic-Kitchens-Object
and the model R(2+1)D.

In table 1, we present the results of the STC performance using only low frequencies.
Note that the table corresponds to the horizontal purple circles in the figure 3 of the paper.
The table 2 reports the performance using a combination of low and high frequency signals
which correspond to the vertical pink and yellow circles in the figure 3. The table 3 reports
the results of rl = {0.5,0.6} where rl = {0.5} are the green circles in the figure 3.

We see that when the performance of F-EP using a combination of low and high fre-
quencies is superior than the baselines (3D_EP has 58.0, STEP has 61.0), but lower than
the best performance of using low frequency signals only which is 67.8 at rl = 0.7. For
rl = {0.3,0.4}, a larger amount of high frequency signals improve the STC performance,
while when rl increases, rl = {0.5,0.6}, an increasing amount of high frequency signals do
not necessarily help for better spatiotemporal consistency.

3 Qualitative Results
Figure 1 compares the baseline methods with F-EP on the dataset UCF101-24 and the model
TSM. F-EP is able to localize the activity which is biking accurately both spatially and tem-
porally. Although Grad-CAM and Grad-CAM++ also localize the biking girl, a substantial
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amount of background information is also included. Backpropagation-based methods Gradi-
ents, Integrated Grad and SmoothGrad produce noisy explanations that are hard to interpret.

Figure 2 compares the methods on the dataset Epic-Kitchens-Object and the model
R(2+1)D. We see that F-EP is able to localize the object cupboard for most of the scene, but it
also highlights the closet which is not the target object (4th frame). One future work direction
is to optimize the masks to attend only to salient frames. CAM- and backpropagation-based
methods are noisy and not spatiotemporal consistent, e.g., Grad-CAM++ and Grad-CAM
fail to localize the cupboard. The baselines 3D_EP and STEP fails to localize cupboard in
the last two frames and the cupboard at the second object is masked by the explanations.
Integrated Grad and SmoothGrad do not capture the cupboard object at the second frame.
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Figure 1: Visual comparison of explanation methods on the UCF101-24 dataset [10]
with model TSM [6]. The input (first row) contains consecutive frames from the activity
Biking. On the right of each method, the first word is the predicted label on the explanation
where BK = Biking, CD = CliffDiving, RCI = RockClimbingIndoor, and the number denotes
the predicted probability.
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Figure 2: Visual comparison of explanation methods on the Epic-Kitchens-Object
dataset [3]. The input (first row) contains frames from the object cupboard. On the right of
each method, the first word is the predicted label on the explanation where CB = cupboard
and the number denotes the corresponding predicted probability.
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