
LI, SINGH, XUE, LEE: PARTGAN 1

Supplementary Material: PartGAN:
Unsupervised Part Decomposition for Image
Generation and Segmentation

Yuheng Li1

li2464@wisc.edu

Krishna Kumar Singh2

krishsin@adobe.com

Yang Xue2

ayxue@ucdavis.edu

Yong Jae Lee1

yongjaelee@cs.wisc.edu

1 University of Wisconsin–Madison
Madison, WI, USA

2 University of California-Davis
Davis, CA, USA

In this supplementary material, we first discuss the loss functions used in the background,
shape, and texture stages. Then, we provide model architecture and training details. Lastly,
we provide additional quantitative and qualitative results as well as ablation studies.

1 Training details of the first three stages
Background stage. As mentioned in the main paper, in the background stage, the back-
ground generator Gb takes the background code b, and a random noise vector z as input to
synthesize a background image B. We use patches outside the bounding boxes to model the
background. Specifically, we use adversarial loss [2] at the patch level to train Gb:

Lb = min
Gb

max
Db

E[log(Db(x))]+E[log(1−Db(B))] (1)

where Db is the background discriminator and x are sampled real background patches.

Shape stage. In the shape stage, the network takes in a shape code s and a noise vector z
to generate shape foreground and shape mask images. These two images are element-wise
multiplied together to form the masked shape image. We want the shape code s (a one-hot
code) to control the shape (e.g., duck vs sparrow), and the continuous vector z to control
the pose variations associated with the shape. To achieve this, we apply mutual information
loss [1] between masked shape image and shape code. Since the number of possible shapes
(dozens) is generally much less than all possible poses (unlimited), mutual information loss
can force code s to represent shape, leaving z to control the pose.

Ls = Ls_in f o = max
Ds,Gp1,Gp2

Ez,s[logDs(s|S f ,m)] (2)

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2014

Citation
Citation
{Chen, Duan, Houthooft, Schulman, Sutskever, and Abbeel} 2016



2 LI, SINGH, XUE, LEE: PARTGAN

where S f ,m is masked shape image, and Ds is a network to approximate the posterior P(s|S f ,m).
Gp1 and Gp2 are networks implemented in the shape stage (see Figure 1 in the main paper).

Texture stage. Taking in shape feature Fs from the shape stage and a texture code t deter-
mined by the s code used in the last stage (e.g., say Ns = 20 and Nt = 200, then the texture
codes will be evenly divided into 20 shape groups with 10 texture codes in each group, and
the sampled t code must come from the corresponding shape group determined by the sam-
pled s code), PartGAN generates the foreground texture in this stage. Texture codes are
grouped according to shape code as there are certain textures which are specific to a shape.
In this stage, we generate a texture foreground image and a texture mask. The texture mask
is used to stitch the generated foreground texture to form the final image T on which the
adversarial loss is applied. In order to make the texture code represent different textures, we
maximize mutual information between texture code t and masked texture image (element
wise multiplication between texture mask and texture foreground). The losses applied in this
stage are:

Ladv = min
Gt

max
Dadv

Ex[log(Dadv(x))]+Ez,b,s,t [log(1−Dadv(T ))] (3)

where Gt (Clarification: In the main paper, Gc should be Gt in the texture stage of Figure 1)
is the texture stage generator, Dadv is the final image discriminator trying to distinguish the
real image x and generated image T .

Lt = Lt_in f o = max
Dt ,Gt

Ez,t,s[logDt(t|T f ,m)] (4)

where T f ,m is masked texture image, and Dt is a network to approximate the posterior
P(t|T f ,m).

2 Implementation details
We train and generate 128 × 128 images for all datasets. For datasets where only landmark
annotations are available, we crop objects by approximating bounding boxes around the
landmarks. For the first three stages, we adopt the same architecture of FineGAN [8]. In our
part stage, we use a Unet [7] structure for the part generator and the encoder.

Generative modules. Gb consists of 6 convolutional layers with BatchNorm [4]. Before
each convolution layer, we first apply nearest neighbor upsampling to upscale the feature
resolution. At the very beginning, we use a fully connected layer to convert input b, z to a
vector of length 512×4×4, then reshape it into a 3D volume with spatial size of 4×4 and
512 channels for the proceeding convolutional layers.

Gp1 initially has the same structure as Gb. Then the intermediate feature again is con-
catenated with the shape code s, which is passed through a residual block and a pair of
convolutional layers, to get the final shape feature Fs, which has 16 channels. The shape fea-
ture is then processed by two different single convolutional layers (which is Gp2 in Figure 1
from main paper) to generate shape foreground and shape mask.

In Gt , similar to the later part of Gp1, shape feature is concatenated with the texture code
t, and are processed by a residual block and a pair of convolutional layers to generate a

Citation
Citation
{Singh, Ojha, and Lee} 2019

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Ioffe and Szegedy} 2015



LI, SINGH, XUE, LEE: PARTGAN 3

feature with size 16×128×128, which is fed into two different single convolutional layers
to generate texture foreground and texture mask.

In the part stage, we use a Unet [7] structure for the part generator. It consists of a
series of upsampling and downsampling blocks which are implemented by convolutional
layer, BatchNorm [4], and ReLU. Specifically we downsample input shape feature (with
16 channels) to the spatial size of 8× 8, while doubling channel size each time. We then
perform upsampling by taking in previous upsampling results and resized shape feature. The
final output layer has a size of 128×128 with k (number of parts) channels. In order to make
sure our generated part masks only focus on foreground objects, we multiply the output from
Gpt with the texture mask to obtain final part masks. The encoder adopts the same network
architecture. For the decoder, we only implement it with three convolutional layers.

Discriminative modules. Db consists of four convolutional layers, with leaky Relu as the
activation function. For the last layer it outputs a 24 x 24 activation indicating real/fake
scores. The network is designed such that each pixel in the output map corresponds to a 34
x 34 receptive field in the input image. Ds has eight convolutional layers, and it outputs a
vector with length of s. Similarly, Dt outputs a vector with length of t. For Dadv, it shares
all the network with Dt except for the last layer, where it has an independent layer to predict
real/fake score for final image T . For Db, Ds, and Dt , initial convolutional layers output 64,
32 and 64 channels.

3 Keypoint predictor

In the main paper, in order to demonstrate that we predict consistent parts, we conduct exper-
iments by predicting keypoints using learned part masks. Compared with hard/soft keypoints
used in other methods, our part mask representation can preserve richer information. Thus, to
take advantage of this richer information, we implement a convolutional predictor to predict
the keypoints from the discovered part masks. For this, we use a Unet [7] structure model.
We use convolution and transposed convolution to do downsampling and upsampling each
time. BatchNorm [4] and ReLU are used after each layer. Here we start our first feature
with 32 channels and double the number of channels each time until it reaches 512, and our
bottleneck feature has a spatial size of 4× 4. During training, we use random crop as data
augmentation.

4 More results and ablation

Comparison with the discriminative model SCOPS [3]. In addition to the generative
model baselines, we also compare to the discriminative model of [3], which is a state-of-art
self-supervised part segmentation approach. Just like our model, it predicts part masks, so
we train a convolutional landmark predictor to regress 2D landmark points using the learned
part masks. We use their released model on the CUB dataset. Their normalized error for
landmark prediction on CUB is 4.55%, which is slightly better than ours (5.05%). However,
their approach requires pre-trained models from ImageNet and is trained with ground truth
object masks [6]. In contrast, we only need bounding box supervision. More importantly, [3]
is not a generative model, thus it can not generate new images as our model does.

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Ioffe and Szegedy} 2015

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Ioffe and Szegedy} 2015

Citation
Citation
{Hung, Jampani, Liu, Molchanov, Yang, and Kautz} 2019

Citation
Citation
{Hung, Jampani, Liu, Molchanov, Yang, and Kautz} 2019

Citation
Citation
{NVlabs} 2019

Citation
Citation
{Hung, Jampani, Liu, Molchanov, Yang, and Kautz} 2019



4 LI, SINGH, XUE, LEE: PARTGAN

sa
m

e 
ba

ck
gr

ou
nd

 &
 s

ha
pe

(a) (b)

Figure 1: Unconditional generation on Stanford Car. See text for details.

sa
m

e 
ba

ck
gr

ou
nd

 &
 s

ha
pe

(a) (b)

Figure 2: Unconditional generation on Cat head. See text for details.

Unconditional part generation. Fig. 1 and Fig. 2 show unconditional generation results
for cars and cats. The images in each row share the same background, shape, pose codes,
and same texture code for all but one part. For the Stanford car dataset, we change the
texture code for the (a) lower body, (b) upper body. For the Cat head dataset, we change the
texture code for the (a) forehead, (b) ears. Note that each ear is actually learned as a different
part as shown in the Figure 2 in the main paper, here we combine the two parts for a better
visualization purpose. The results show that our model is able to learn consistent part masks
across different instances, and it can also successfully change the texture of a specific region.

Conditional part generation. Fig. 3 and Fig. 4 show part-level texture transfer given
real reference images. In each sub-figure, the real reference images on the top provide back-
ground, shape, and texture (for all but one part) information, while the reference images on
the left provide the texture information of the part to be transferred. In these examples, we
transfer the lower and upper region for cars, and ears and forehead region for cats. These
results show that PartGAN can accurate locate consistent parts in different real images and
transfer part texture successfully.

Better foreground-background disentanglement. Co-occurring context can often mis-



LI, SINGH, XUE, LEE: PARTGAN 5

(a) (b)

Figure 3: Conditional generation on Stanford Car. See text for details.

(a) (b)

Figure 4: Conditional generation on Cat head. See text for details.

takenly be considered as part of the object (e.g., branches often appear with birds). Thus,
when transferring texture from one image onto another, prior disentanglement work like
MixNMatch [5] can mistakenly change the texture of the co-occurring context. Since Part-
GAN performs part decomposition and if the co-occurring context is learned as a separate
part, in an interactive setting, one can subtract the context part from the texture stage mask
(for all images at once) to improve background and foreground separation. For example, in
Fig. 5, PartGAN can transfer the texture of the bird from the first column to the second col-
umn without changing the texture of the branch (fourth column). While MixNMatch can also
do this, it also undesirably changes the texture of the co-occurring branch/shadow as it has
no control over parts (third column). In the last two columns, we show how the foreground
mask can be refined by removing the context part (cyan color) generated by PartGAN. We
also quantitatively evaluate the quality of bird masks on CUB, and find our generated bird
masks, after removing the extra context part, has 0.840 pixel-level AP which is significantly
higher than MixNMatch’s 0.749 AP.

Citation
Citation
{Li, Singh, Ojha, and Lee} 2020



6 LI, SINGH, XUE, LEE: PARTGAN

texture bg & shape MixNMatch Ours mask refined mask 

Figure 5: Removing co-occurring context. MixNMatch [5] often mistakenly considers co-
occurring context as part of the object. Our model can recognize the context as a separate
part, so one can remove the context for more accurate foreground texture transfer.

Figure 6: Sketch to image generation. In the first column, the four sketch images provide
shape information, the middle four real images provide texture information for each part,
and the last column are the final generated images.

Sketch-to-Image. Fig. 6 shows an application of PartGAN. It can be used to add texture
details to one or multiple parts of sketch images. For example, the four real images in the
middle provide texture details of the bird’s head, wing, chest, and belly regions, and the last
column shows the texturized sketch images. It is worth noting that our model never saw any
sketch images during training, but can still correctly decompose sketch images into parts
consistently. This demonstrates the generalization ability of our model.

Video. We provide a video (named 57.mp4) which shows our model’s part decomposi-
tion consistency. Specifically, on the left, we interpolate a sequence of images where each
time we change a single factor by sampling different latent codes (background b, shape s,
texture t, and pose z). On the right, we show the discovered parts for each generated image.
This video clearly indicates that our learned parts are consistent across different instances.

Ablation studies. Lastly, we conduct detailed ablation studies where we remove each
of the loss functions from our full model. Table 1 shows the landmark prediction error of
each ablation model on CUB using the previously described convolution predictor. The
larger error of each ablation model shows the importance of each and every loss. Fig. 7
visually demonstrates the necessity of each loss component. Without the merge loss, the
learned masks are faint and have gaps between them. Without the concentration loss, a
single part can be comprised of two or more disjoint regions. Without the partition loss,
different parts blend into each other. The balancing loss prevents parts from being too small.

Citation
Citation
{Li, Singh, Ojha, and Lee} 2020



LI, SINGH, XUE, LEE: PARTGAN 7

Ours w/o merge w/o concentration w/o partition w/o balance w/o reconstruction
Error 5.05 7.03 7.85 6.84 7.78 6.95

Table 1: Quantitative ablation studies to demonstrate the necessity of each loss. We report
landmark prediction error on CUB. See Fig. 7 for visualization results.

w/o 
merge

w/o 
concentration

w/o 
partition

w/o 
balancingOurs

w/o 
reconstruction

Figure 7: Qualitative ablation studies. The images above show that removing any loss (in
each column) results in unsatisfactory part decomposition learning.

Figure 8: Failure cases. In this example, we try to transfer the ‘chest’ region texture from
the image on the left to those on the top. Our model is unable to recognize the chest region
due to rare pose or lack of foreground detail, leading to incorrect part generation results.

Finally, the model tends to learn parts according to their relative location in images without
reconstruction loss.

Apart from evaluating the importance of each loss function, a plausible alternative solu-
tion to replace the merge and partition losses is applying the softmax across mask regions.
However, we find that this is insufficient and not as explicit as our constraints for obtaining a
single location with high probability for a single part mask. Empirically, this alternative so-
lution leads to multiple parts capturing the same region (e.g. two parts with ∼0.5 probability
each).

Failure cases. PartGAN can sometimes mistakenly identify wrong object parts, which
leads to unsatisfactory generations as shown in Fig. 8. In this example, we try to transfer the
texture in the bird’s chest region of the image on the left to the chest region of the images
on the top. Due to imbalanced data (i.e., flying birds are much less frequent than non-flying
birds in the training data), similar color between foreground and background, or lack of
foreground details, PartGAN fails to recognize the correct object part.



8 LI, SINGH, XUE, LEE: PARTGAN

References
[1] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel.

Infogan: Interpretable representation learning by information maximizing generative
adversarial nets. In NeurIPS, 2016.

[2] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS,
2014.

[3] Wei-Chih Hung, Varun Jampani, Sifei Liu, Pavlo Molchanov, Ming-Hsuan Yang, and
Jan Kautz. Scops: Self-supervised co-part segmentation. In CVPR, 2019.

[4] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. ICML, 2015.

[5] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, and Yong Jae Lee. Mixnmatch: Multi-
factor disentanglement and encoding for conditional image generation. In CVPR, 2020.

[6] NVlabs. https://github.com/nvlabs/scops. 2019.

[7] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In MICCAI, 2015.

[8] Krishna Kumar Singh, Utkarsh Ojha, and Yong Jae Lee. FineGAN: Unsupervised hi-
erarchical disentanglement for fine-grained object generation and discovery. In CVPR,
2019.


