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1 Background on ODE Formulation
The essence of neural ODEs [3] lies in employing a neural network f to estimate the vector
field of the latent state h. Formally, h in the continuous domain T ∈ T can be represented as

dh(t)
dt

= fθ (h(t), t), h(T ) = h(0)+
∫ T

0
fθ (h(t), t)dt,

where θ is a set of trainable parameters of f . Regarding time-series modeling, T corresponds
to the continuous time domain, thereby allowing the model to characterize the latent state
over the continuously evolving time. In our work, the neural ODE is used to model the
continuous-time dynamics of the keypoint sequence, which conveys successive geometric
information on the object movement.

2 IMPLEMENTATION DETAILS

2.1 Network Architecture
We provide the architecture details of MODE-GAN, which consists of two stages. All ar-
chitectures are described for the purpose of generating 64×64 videos of 16 timesteps. The
architectures of the motion generator and the discriminator are shown in Tables 1 and 2,
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Part Layer Activation Output Shape

zm - - 128

Function
P

Linear ReLU 128
Linear ReLU 128
Linear ReLU 128
Linear - 128

ODE Solver
fθ

Linear Tanh 128
Linear - 128

Function
Q

Linear ReLU 128
Linear ReLU 128
Linear - 2×K

Heatmaps H1:T - - T×K×64×64

Table 1: Motion generator architecture of
our model.

Part Layer Activation Output Shape

Heatmap Ht - - K×64×64

Discriminator
D(I)

f r

Conv LeakyReLU 32×32×32
Conv LeakyReLU 64×16×16
Conv LeakyReLU 128×8×8
Conv LeakyReLU 256×4×4
Conv LeakyReLU 256×1×1
Conv - 1

Heatmaps H1:T - - T×K×64×64

Discriminator
D(I)

sq

Conv LeakyReLU T×32×32×32
Conv LeakyReLU T/2×32×32×32
Conv LeakyReLU T/2×64×16×16
Conv LeakyReLU T/4×64×16×16
Conv LeakyReLU T/4×128×8×8
Conv LeakyReLU T/8×128×8×8
Conv LeakyReLU T/8×256×4×4
Conv LeakyReLU T/16×256×4×4
Conv LeakyReLU T/16×256×1×1
Conv - 1

Table 2: Motion discriminator architecture of
our model.

Part Layer Activation Output Shape

za - - 128

FC

Linear LeakyReLU 128
Linear LeakyReLU 128
Linear LeakyReLU 128
Linear LeakyReLU 8192

Generator
G

M1
t - 512×4×4

Upsample - 512×8×8
Comp. Block - 512×8×8

Upsample - 512×16×16
Comp. Block - 256×16×16

Upsample - 256×32×32
Comp. Block - 128×32×32

Upsample - 128×64×64
Comp. Block - 64×64×64

Conv3×3 Tanh 3×64×64

Table 3: Video generator architecture of our
model.

Part Layer Activation Output Shape

Frame vt - - 3×64×64

Discriminator
D(I)

f r

Conv LeakyReLU 64×32×32
Conv LeakyReLU 128×16×16
Conv LeakyReLU 256×8×8
Conv LeakyReLU 512×4×4
Conv LeakyReLU 512×1×1
Conv - 1

Video v1:T - - T×3×64×64

Discriminator
D(I)

sq

Conv LeakyReLU T×64×32×32
Conv LeakyReLU T/2×64×32×32
Conv LeakyReLU T/2×128×16×16
Conv LeakyReLU T/4×128×16×16
Conv LeakyReLU T/4×256×8×8
Conv LeakyReLU T/8×256×8×8
Conv LeakyReLU T/8×512×4×4
Conv LeakyReLU T/16×512×4×4
Conv LeakyReLU T/16×512×1×1
Conv - 1

Table 4: Video discriminator architecture of
our model.

respectively. Also, the architectures of the video generator and discriminator are shown in
Tables 3 and 4, respectively.

2.2 Evaluation Metric
We evaluate all video generation models via Frechet Inception Distance (FID) [7, 12], mea-
suring the distance between two sets of videos based on their embeddings from a pre-trained
feature extractor [6]. Specifically, the video FID [13] is computed as

∥µ − µ̃∥2 +Tr(Σ+ Σ̃−2
√

ΣΣ̃), (1)

where µ , µ̃ , Σ, and Σ̃ represent the mean and covariance matrix of real and fake feature maps
across all video frames, respectively. Lower FID means the distribution between the feature
vectors of real and fake are more similar, hence more realistic fake samples.
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(a) RNN-based motion generator
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(b) Neural ODE-based motion generator

Figure 1: Comparison of RNN and neural ODE-based architectures for pendulum experi-
ment. The only difference lies in the intermediate neural networks that generates the hidden
states h1:T . For the RNN input, a Gaussian noise εt is used for each timesteps t = 1,2, . . .T .

2.3 Adversarial Objectives

Adversarial Losses at Stage I. We employ two discriminators D(I)
fr ,D

(I)
sq , where each receives

Gaussian heatmaps at an individual frame and sequence level, respectively. D(I)
fr plays a role

in enhancing the generated keypoints quality better in single frame-level and D(I)
sq encourages

the generated keypoints sequences to be naturally evolving.

L(I)
adv = EHt ,Ĥt

[
logD(I)

fr (Ht)+ log(1−D(I)
fr (Ĥt))

]
(2)

+EH1:T ,Ĥ1:T

[
logD(I)

sq (H1:T )+ log(1−D(I)
sq (Ĥ1:T ))

]
.

In particular, we employ the WGAN-GP [5] loss as the adversarial loss.
Adversarial Losses at Stage II. We use adversarial losses to achieve both goals: (1) the
image discriminator loss for generating realistic frames and (2) the video discriminator loss
for retaining motion information, where we use the WGAN-GP [5] loss. To this end, we
use two motion conditional adversarial losses: D(II)

fr , D(II)
sq encourages the model to generate

realistic frames and retaining motion information.

L(II)
adv = Evt ,v̂t ,Ht

[
logD(II)

fr ([vt ;Ht ])+ log(1−D(II)
fr ([v̂t ;Ht ]))

]
(3)

+Ev1:T ,v̂1:T ,H1:T

[
logD(II)

sq ([v1:T ;H1:T ])+ log(1−D(II)
sq ([v̂1:T ;H1:T ]))

]
,

where [· ; ·] denotes concatenation. We adopt the WGAN-GP [5] loss similar to stage I.

2.4 Details of Pendulum Experiments
Dataset Generation. We used 1,000 simulated pendulum trajectories with fixed gravity
force g of 9.81 m/s2. The damping factor B, length of pendulum L, and mass of bob M were
each sampled from the Gaussian distribution with respective means of 0.2, 1.0, 1.0 and unit
variance. For trajectory simulation, Runge-Kutta was used to solve the pendulum equation
(first order differential equations) described below:[( dθ

dt

)( dθ̇

dt

)]= [
θ̇

−
( g

L

)
· sin(θ)−

( B
M

)
· θ̇

]
,
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(a) Recurrent neural network

(b) Neural ODE

Figure 3: Visualization of generated θ , θ̇ using two different motoin generators employing
(a) RNN and (b) Neural ODE

Figure 2: The 68 2D landmarks
used by facial landmarks detector
model [2]. We use 13 keypoints
among them (red).

where dt is a time unit fixed to 0.1 during data gen-
eration.
Comparison of RNN and ODE Motion Genera-
tor. Fig. 1 shows the detailed architectures of RNN
and neural ODE-based pendulum dynamics gener-
ator. Both generators are trained using 1,000 simu-
lated pendulum trajectories. After training, the gener-
ators should mimic the plausible dynamics of a pen-
dulum by estimating two physical variables θ and θ̇ .

2.5 Dataset Preprocessing

Fig. 2 shows the chosen facial keypoints (2, 9, 16, 20,
25, 38, 42, 45, 47, 49, 52, 55, 58th) for MUG [1] and
UvA-NEMO [4]. The facial keypoint selections refer
to previous work [8]. We crop and resize to 64×64 pixels for both datasets.

3 ADDITIONAL EXPERIMENTS

In the following section, we provide additional experiments as follows:

• Analysis on the dynamics of each video dataset.

• Qualitative examples from pendulum experiments using both recurrent neural network
and neural ODE.

• Qualitative examples of sampled keypoints sequence from our motion generator.
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• Qualitative comparison results against unconditional video generation baselines using
facial expression datasets.

• Qualitative results of appearance and motion manipulation on UvA-NEMO and MUG.

• Qualitative and quantitative evaluations on dynamic frame rate.

Analysis on Dynamics of Datasets. To analyze the dynamics of each dataset, we includes
the video examples of the four training datasets :Weizmann Action, KTH Action, MUG, and
UvA-NEMO. Due to different frame rates and velocity of human motions in each dataset, the
degree of the movement between the adjacent frames varies as shown in Fig. 4. We find out
that Human action datasets (i.e., Weizmannn Action and KTH Action) have relatively large
movements compared to facial expression datasets (i.e. MUG and UvA-NEMO). As a result,
our model and baselines display more significant movements in the human action videos
than in the facial expression videos.
Examples of Pendulum Experiment. Fig. 3 shows additional examples of the generated
pendulum dynamics from the RNN and the neural ODE based motion generators (See Fig. 1
for detailed architecture). As shown in Fig. 3, the RNN-based motion generator fails to gen-
erate smooth dynamics (a). In contrast, our ODE-based motion generator successfully simu-
lates the pendulum dynamics (b).
Examples of Sampled Motion. Fig. 5 illustrates the examples of the generated keypoints
sequences from our motion generator trained on Weizmann Action (purple) or KTH Action
dataset (blue). Through these examples, we demonstrate that our motion generator has the
capability in producing diverse and fluid motions as a form of a sequence of evolving key-
points.
Comparison with baselines using Facial Expression Datasets. Fig. 6 presents qualita-
tive comparison of MODE-GAN with VGAN [11], TGAN-v2 [9], MoCoGAN [10] and
G3AN [13] on two facial expression datasets: UvA-NEMO and MUG. MODE-GAN shows
competitive results compared to the baseline models while most generated videos contain
relatively marginal movement than human action cases due to the restricted movement char-
acteristics of facial datasets.
Examples of Motion and Appearance Manipulation. As shown in Fig. 7-10, we further
demonstrate the ability of MODE-GAN to separately learn the appearance and motion rep-
resentations. We show the examples of manipulating appearance and motion noise vectors
in our video generator trained on MUG and UvA-NEMO dataset.
Qualitative Evaluation on Dynamic Frame Rate. One major strength of MODE-GAN
which makes it distinguished with other baselines is its ability to generate videos in continuous-
time domain T . In other words, MODE-GAN can generate realistic videos in arbitrary
frame rates regardless of the frame rate of the training samples, by simply integrating (i.e.
generating keypoints sequences) over the desired timesteps. (e.g., MODE-GAN can gen-
erate video frames at 0.17 or 0.81 second by training with 1.0-second time intervals). In
other words, MODE-GAN can flexibly generate a video at an arbitrary frame rate other
than the one used at training (e.g., generating video frames at 0.17 or 0.81 second). In
this experiment, we compare the quality of Weizmann Action videos generated in various
frame rates ({16,18,20,22,24} FPS) by MODE-GAN and a baseline (MoCoGAN) both
trained at 16 FPS. While MODE-GAN learns motion dynamics based on fixed timesteps
{s1,s2, . . . ,sT} ⊂ T , where 0 < s1 < s2 < · · · < sT during training, it can generate videos
in arbitrary frame rates by simply integrating over the desired timesteps during inference.
In this experiment, we compare the quality of videos generated in various frame rates,
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both by MODE-GAN and a baseline, namely MoCoGAN. We define A continuous-time
video generation problem aims to generate video frames v̂1:L for another set of timesteps
M≡{m1,m2, . . . ,mL} ⊂ T . As a matter of fact, this task can reduces to discrete-time video
generation problem as previously tackled if we set M = S . Furthermore, We evaluate the
video quality given the arbitrary length query timesteps M to demonstrate the capability
on synthesizing a video at continuous-time domain. As MoCoGAN produces motion codes
via its RNN component only for each 1/16 second, we linearly interpolate two adjacent
motion codes from the RNN to obtain the motion representation at unseen timesteps. 1 2

Fig. 11 shows a comparison between synthetic videos generated by MoCoGAN and MODE-
GAN at 20 FPS. While MoCoGAN generates frames that looks like a mixture of multiple
images, MODE-GAN generates distinct frames, showing the advantage of the ODE-based
approach in handling continuous time. These results demonstrate that simply interpolating
different motion representations to generate in-between frames yields sub-optimal outcomes
(i.e. mixed frames at the pixel level).
Quantitative Evaluation on Dynamic Frame Rate. Fig. 12 shows the video FID scores of
the videos generated at increasing frame rates (from 16 to 24) using the two models traine
at 16 FPS. Based on the the monotonic increase of video FID scores by both models, it is
evident that the denser the frame rate, the more challenging the video generation becomes.
However, the steeper slope of MoCoGAN than MODE-GAN clearly indicates that MODE-
GAN is quite robust to the increasing FPS. In other words, MODE-GAN is more comfortable
than MoCoGAN in generating videos in continuous-time domain, even at a higher frame rate
than the training frame rate.

1Unlike MODE-GAN and MoCoGAN, other baselines cannot generate or interpolate motion features at arbitrary
timesteps.

2We take MoCoGAN as a representative RNN-based model for generating motion features at arbitrary timesteps.
Note that G3 AN cannot generate or interpolate motion features at arbitrary timesteps.
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(a) Weizmann Action

(b) KTH Action

(c) MUG

(d) UvA-NEMO

Figure 4: Video samples from each dataset.
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Figure 5: Examples of generated keypoints sequences from our motion generator.

Figure 6: Qualitative comparison with baselines on facial expression datasets.
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Figure 7: Qualitative results of our method on the MUG dataset. Every three row has the
same za (i.e. appearance noise vector) with different zm (i.e. motion noise vector).

Figure 8: Qualitative results of our method on the MUG dataset. Every three row has same
zm (i.e. motion noise vector) with different za (i.e. appearance noise vector).
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Figure 9: Qualitative results of our method on the UvA-NEMO dataset. Every three row has
same za (i.e. appearance noise vector) with different zm (i.e. motion noise vector).

Figure 10: Qualitative results of our method on the UvA-NEMO dataset. Every three row has
same zm (i.e. motion noise vector) with different za (i.e. appearance noise vector).
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(a) Ours (b) MoCoGAN

Figure 11: 20-FPS videos generated by two models.
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Figure 12: Video FID scores with varied frame rates on Weizmann Action. MODE-GAN
consistently outperforms MoCoGAN, showing marginal performance drop to generate at
higher frame rate.

References
[1] Niki Aifanti, Christos Papachristou, and Anastasios Delopoulos. The MUG facial ex-

pression database. In International Workshop on Image Analysis for Multimedia Inter-
active Services, 2010.

[2] Adrian Bulat and Georgios Tzimiropoulos. How far are we from solving the 2D & 3D
face alignment problem? (and a dataset of 230,000 3D facial landmarks). In Proc. of
the IEEE International Conference on Computer Vision (ICCV), 2017.

[3] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural
ordinary differential equations. In Advances in Neural Information Processing Systems
(NIPS), 2018.
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