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1 Training Details

We describe the training process of Strategy I in Algorithm 1. In each training iteration t, we
sample a pair of uncompressed image IH and its compressed version IL from the training set.
After adopting the pretrained weights θsim of the simulation network and randomly initialize
the weights θe and θd for the encryption encoder E and the decryption decoder D, we then
start to update these parameters using our objective function. Specifically, we first use the
loss Lsim (Eq.(2) in the main paper) to update the parameters in the simulation network,
namely:

θ
t+1
sim = θ

t
sim−α5θ t

sim
Lsim, (1)

where α is the learning rate. We then use the overall loss function Ltotal (Eq.(6) in the mian
paper) to update the parameters in the encryption encoder E and the decryption decoder D,
namely:

(
θ

t+1
e ,θ t+1

d

)
=
(
θ

t
e,θ

t
d
)
−α5θ t

e,θ
t
d
Ltotal . (2)

As for the training process of Strategy II and the one for deep-learning basedcodec, we do
not need the parameters of the simulation network θsim and thus skip the update in Eq. (1).
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Algorithm 1: Training process of our Strategy I.

1 for Each Iteration do
2 Sample an image pair

(
IH , IL

)
//Update simulation network

3 Obtain θ
t+1
sim via (1)

//Update encryption encoder and decryption decoder
4 Obtain θ t+1

e and θ
t+1
d via (2)

2 Additional Results

2.1 Effectiveness of Hidden Residual
To show the effectiveness of hidden residual in the proposed method, we investigate the
performance gain from the hidden residual encoded in IL

enc. In Table 1 and 2, we show the
average PSNR of the original compressed image IL, the encoded compressed image IL

enc, and
the final outputs I′H of our method (with respect to the original input image IH ), on both
Kinetics and Kodak datasets and with different coding standards. Since the final output of
our method I′H is equal to the summation of encoded compressed image IL

enc and the decoded
hidden information I′R, we can tell from the PSNR gap between IL

enc and I′H that most of the
contribution in boosting image compression is attributed to the hidden information I′R.

2.2 Ablation Study
We conduct an ablation study on the hyper-parameter λ , which helps to balance between loss
terms in the overall objective function, Ltotal = λLrec +Lcon. We adopt the JPEG coding
and set the quality value to 50. As shown in Fig. 1, we observe that increasing the weight λ

would increase both the bpp of encoded compressed images IL
enc and the PSNR of the final

result I′H . It is not surprising as a higher λ would encourage the Encoder E to hide more
information for minimizing the distance between I′H and IH , while leading to the increased
bpp. In addition, we observe that the trend of fixed-bpp setting is different, which is already
saturated when λ is larger than 4. This is because the bpp of encoded compressed image IL

enc

Table 1: Evaluation on the intermediate and final results, including original compressed
image IL, our encoded compressed image IL

enc, and our final output I′H , on both Kinetics and
Kodak datasets with different traditional codecs.

Coding BPG JPEG JPEG2000
Mode Fix-Q Fix-BPP Fix-Q Fix-BPP Fix-Q/BPP
Quality / Bpp 30 / 0.702 - / 1.0 50 / 0.889 - / 1.0 48 / 0.50

Kinetics
IL 36.404 39.271 32.640 33.826 29.292
IL
enc 36.555 37.010 31.310 31.760 26.349

I′H 39.099 39.989 36.370 36.121 30.945

Kodak
IL 35.373 37.084 32.059 32.749 28.575
IL
enc 35.232 35.018 30.230 30.213 25.504

I′H 37.917 37.578 34.960 34.243 30.108
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Table 2: Evaluation on the intermediate and final results, including original compressed
image IL, our encoded compressed image IL

enc, and our final output I′H , on both Kinetics and
Kodak datasets with different deep-learning-based codecs.

Coding CAE-B CAE-P RNN
Bpp 0.5 2.0 0.8 2.5 0.5 1.0

Kinetics
IL 26.162 29.835 30.978 34.108 27.990 30.822
IL
enc 26.611 30.792 31.330 34.731 28.210 31.052

I′H 27.258 31.584 31.911 35.875 28.935 31.914

Kodak
IL 25.494 28.774 29.677 32.797 26.890 29.512
IL
enc 25.934 29.508 30.046 33.388 27.111 29.708

I′H 26.636 30.441 30.584 34.799 27.761 30.337

is fixed, such that the capacity of hidden information is limited.

2.3 Analysis on Low Bit-Rate Compression

In Table 3 and 4, we show quantitative comparisons between our method and several baseline
approaches under low bpp setting on Kinetics and Kodak datasets. For fully differentiable
deep-learning-based codecs, we show favorable performance over other baselines, which
demonstrates that our method is able to recover severe distortion under low bpp setting via
end-to-end optimization. On the other hand, the proposed framework performs competitively
when applying to traditional codecs under the low bpp setting. One limitation is that the sim-
ulation network for traditional codecs is not perfect (i.e., when there exists large discrepancy
between IL

enc and ISL
enc), which could cause the inaccurate gradients back-propagated through

our skip-component. Nevertheless, improving the simulation network for traditional codecs
is out of the scope of this work and we will include it in the future work.

Figure 1: Ablation study on the hyper-parameter λ .
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Table 3: Result on the Kinetics dataset with different compression codecs under low bit-rate
setting. We compare our proposed model with respect to the baselines from DnDNN [5] and
MemNet [3].

Kinetics
Coding Standard JPEG2000 CAE-B [6] RNN [4]

Bpp (bits/pixel) 0.15 0.125 0.125

PS
N

R

Original 24.643 23.220 22.660
MemNet [3] 25.279 23.612 23.412
DnCNN [5] 25.459 23.636 23.353
Ours 25.213 23.940 24.072

SS
IM

Original 0.680 0.680 0.690
MemNet [3] 0.711 0.707 0.719
DnCNN [5] 0.720 0.704 0.709
Ours 0.734 0.707 0.724

Table 4: Results on the Kodak dataset with different compression codecs under low bit-rate
setting. We compare our proposed model with respect to the baselines from DnDNN [5] and
MemNet [3].

Kodak
Coding Standard JPEG2000 CAE-B [6] RNN [4]

Bpp (bits/pixel) 0.15 0.125 0.125

PS
N

R

Original 25.323 22.936 22.888
MemNet [3] 25.415 23.088 23.229
DnCNN [5] 25.922 23.322 23.441
Ours 25.624 23.674 24.078

SS
IM

Original 0.631 0.603 0.612
MemNet [3] 0.646 0.617 0.633
DnCNN [5] 0.658 0.618 0.632
Ours 0.685 0.625 0.642

2.4 Comparison with Jiang et al. [1]

Jiang et al. [1] propose a compression framework which is compatible with existing image
codecs, including JPEG, JPEG2000, and BPG. However, we point out two differences be-
tween Jiang et al. [1] and our proposed framework: 1) Our main novelty is to hide the residual
and our framework is general for both traditional and deep learning-based codecs, which are
not explored in Jiang et al.; 2) the model from Jiang et al. employs iterative training to han-
dle the non-differential issue in traditional codecs, whereas our method allows end-to-end
backpropagation. In Table 5, we show the quantitative comparison between our proposed
method and the model provided by Jiang et al., where we follow the experimental setting
(i.e., JPEG codec, bpp=0.28) in their released code for fair comparisons. We find both mod-
els have comparable performance but our method has advantages as described above (i.e.,
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Table 5: Quantitative comparison with Jiang et al. [1] on the Kodak dataset under JPEG
(bpp=0.28).

PSNR SSIM

Original 26.308 0.702
Jiang et al. [1] 28.945 0.825

Ours 29.102 0.812

Table 6: Application of our proposed method to Liu et al. [2] on the Kodak dataset under
different bpps (0.79 and 1.45).

Bpp=0.79 Bpp=1.45
PSNR SSIM PSNR SSIM

Original (Liu et al. [2]) 34.577 0.927 38.920 0.965
DnCNN [5] 34.816 0.933 39.067 0.968

Ours 34.942 0.934 39.231 0.968

general for different codecs and end-to-end learnable).

2.5 Application to SOTA deep learning-based codec Liu et al. [2]
To verify our efficacy on the recent deep learning-based codecs, we apply our hiding residual
framework to one of the state-of-the-art learning-based codecs, Liu et al. [2], as shown in
Table 6. The results show that our proposed method still can bring improvement to the SOTA
compression codec and outperform the baseline (i.e. DnCNN) under different settings of
bpp.

2.6 Bits-per-pixel versus PSNR
We provide the rate-distortion curves (bits-per-pixel versus PSNR) based on different codecs,
such as JEPG, JPEG2000, BPG, and RNN, in Fig. 2 for our proposed method and DnCNN
(the most competitive baseline). We find that for the traditional codecs (JPEG, JPEG2000,
and BPG), in terms of PSNR, our method has comparative performance w.r.t. DnCNN at
low bpp and achieves better PSNR when the bpp increases. On the other hand, for the deep-
learning-based method (i.e. RNN here), our method outperforms DNCNN by a margin no
matter the bpp is low or high. To be more detailed, we find that there are two different phe-
nomenons according to the type of codecs (traditional or deep-learning-based), as shown in
Fig. 2. First, in the case of traditional codecs, as the bpp grows, the performance gain is
increasing. However, when the bpp is very low, our model downgrades to DnCNN and has
a similar performance. That is because both our strategy I and II do not perfectly remove
the influence of non-differentiable compression functions under the limitation of low bpp. It
needs more effort to encode the residual. Therefore, when the bpp is set to a very low num-
ber, these learnt encoded messages are still destroyed by the compression and consequently
downgrade to the post-processing image restoration model (i.e. DnCNN). On the other hand,
in the case of learnt codecs (e.g. RNN), the compression procedure can be differentiated so
the gradient can flow back perfectly, encouraging the encoder to hide the residual effectively
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Figure 2: Rate-distortion curves of ours, DnCNN, and codecs (JPEG, JPEG2000, BPG and
RNN) on both Kinetics and Kodak datasets.

and correctly. Hence, we can see that the performance gain is stable even if the bpp decreases
to a very low value.

2.7 Qualitative Results
In this section, we provide some observations on both the original residual IR and the decoded
hidden information I′R, where the latter is decrypted from the compressed encoded image
IL
enc. Moreover, we present more qualitative results of our method for improving the visual

quality of compressed images.
We visualize the decrypted hidden information I′R, its corresponding original residual

IR, and the difference between its corresponding IH and IL
enc in Fig. 3. Since the compressed

image IL and the encoded compressed image IL
enc are not exactly the same, we can observe

that the difference between IH and IL
enc is quite similar to the original residual IR yet still

different in some details. Moreover, our decrypted hidden information I′R has the same
contour as the original residual IR, but has similar details w.r.t. the difference between IH

and IL
enc. As a result, we do not constraint the Decoder D to learn the reconstruction of

residual directly (i.e. forcing I′R to be consistent with IR), but only utilize the concept of
residual learning to adaptively produce the residual for IL

enc.
We provide more example results on Kinetics, as shown in Figure 4 with JPEG coding,

Figure 5 with JPEG-2000 coding, and Figure 6 with several traditional and deep-learning-
based codings respectively.

3 Network Architecture
Here we provide the details for the network architecture of each component used in our
proposed method.
1) Encoder E. As shown in Table 7, the encoder E for the encryption process is com-
posed of 6 convolution layers without down-sampling on the image size, where the uncom-
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pressed/original image IH and its residual IR are concatenated and then fed into E.
2) Decoder D. The decoder D for the decryption process is an 8-layer convolutional neural
network (as shown in Table 8) which attempts to decrypt the hidden information from IL

enc.
The architecture of our decoder is identical to the baseline model DnCNN [5].
3) Simulation Network. The simulation network follows an autoencoder architecture (as
shown in Table 9) which learns to mimic the compression function by reproducing the out-
puts of traditional codec.

Table 7: Architecture of Encoder E.

layer channel kernel stride activation

conv1_1 64 3×3 1 ReLU
conv1_2 64 3×3 1 ReLU
conv1_3 64 3×3 1 ReLU
conv1_4 64 3×3 1 ReLU

conv2_1 64 3×3 1 ReLU

Table 8: Architecture of Decoder D.

layer channel kernel stride activation

conv1_1 64 3×3 1 ReLU
conv1_2 64 3×3 1 ReLU
conv1_3 64 3×3 1 ReLU
conv1_4 64 3×3 1 ReLU
conv1_5 64 3×3 1 ReLU
conv1_6 64 3×3 1 ReLU

conv2_1 64 3×3 1 ReLU
conv2_2 3 3×3 1

Table 9: Architecture of Simulation Network.

layer channel kernel stride activation

conv1_1 32 3×3 1 ReLU
conv1_2 64 3×3 1 ReLU
conv1_3 128 3×3 1 ReLU
conv1_4 128 3×3 1

deconv1_1 128 3×3 1 ReLU
deconv1_2 64 3×3 1 ReLU
deconv1_3 32 3×3 1 ReLU
deconv1_4 3 3×3 1

Citation
Citation
{Zhang, Zuo, Chen, Meng, and Zhang} 2017



8 LEE ET AL: LEARNING TO HIDE RESIDUAL FOR BOOSTING IMAGE COMPRESSION

References
[1] Feng Jiang, Wen Tao, Shaohui Liu, Jie Ren, Xun Guo, and Debin Zhao. An end-to-end

compression framework based on convolutional neural networks. IEEE Transactions on
Circuits and Systems for Video Technology (TCSVT), 2017.

[2] Jiaheng Liu, Guo Lu, Zhihao Hu, and Dong Xu. A unified end-to-end framework for
efficient deep image compression. arXiv preprint arXiv:2002.03370, 2020.

[3] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Memnet: A persistent memory
network for image restoration. In IEEE International Conference on Computer Vision
(ICCV), 2017.

[4] George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David Minnen, Joel
Shor, and Michele Covell. Full resolution image compression with recurrent neural
networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[5] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaus-
sian denoiser: Residual learning of deep cnn for image denoising. In IEEE Transactions
on Image Processing (TIP), 2017.

[6] Haimeng Zhao. Cae-p: Compressive autoencoder with pruning based on admm.
ArXiv:1901.07196, 2019.



LEE ET AL: LEARNING TO HIDE RESIDUAL FOR BOOSTING IMAGE COMPRESSION 9

Figure 3: Example results of visualizing the original image IH , the original residual IR,
the decrypted hidden information I′R, and the difference between IH and the encoded com-
pressed image IL

enc. For IR, IH − IL
enc, and I′R, we multiply each pixel value by 5 in order to

have better visualization.

Figure 4: Example results for improving visual quality of compressed images. We show that
our method produces clearer reconstruction, in comparison to the baselines from DnCNN
and MemNet.
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Figure 5: Example results for improving visual quality of compressed images (bpp = 0.5
here). We show that under such severe condition of low bpp, DnCNN and MemNet are
likely to produce undesirable results. For example, in the third row of column (c) and (d),
the man’s head in the region annotated in red is oversmoothed.
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Figure 6: More example results for improving the visual quality of compressed images.
We show that our proposed method is more likely to recover the details from compressed
images, while other baselines may cause blurs or unnatural color blocks in some regions.
For instance, in the first row of column (c) DnCNN, there is a blue artifact on the panel.


