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This supplementary material contains four parts:

• Section A describes the implementation detail of our contrastive guidance replaced by
existing contrastive loss.

• Section B provides hyperparameters of each dataset and backbone.

• Section C shows the quantitative results of our method upon all the backbones and
datasets in terms of MaxBoxAccV2 [2].

• Section D illustrates more qualitative results of our method.

A Implementation details of InfoNCE loss
In Table 4 of the main paper, we report the performance when our contrastive guidance loss
Lcg is replaced by two different cases. First, we simply replace Eq.(5) with InfoNCE loss
[1, 5] as:

Lin f o =−log(
exp(sim(zfg, z̄fg)/τ)

exp(sim(zfg, z̄fg)/τ)+ exp(sim(zfg,zbg)/τ)
)

−log(
exp(sim(z̄fg,zfg)/τ)

exp(sim(z̄fg,zfg)/τ)+ exp(sim(z̄fg, z̄bg)/τ)
),

(1)

where sim denotes cosine similarity between normalized embedded features, τ denotes tem-
perature parameter.
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ImageNet CUB
VGG Inc Res VGG Inc Res

τfg 0.7 1.0 0.9 1.1 0.9 1.3
τbg 0.6 0.8 0.8 1.0 0.7 0.9

Table 1: Hyperparameters (τfg, τbg) for contrsative guidance. VGG: VGG16 [6], Inc: Incep-
tionV3 [7], Res: ResNet50 [3].

Additionally, we replace our Lcg with using only one negative sample(i.e., background
of original feature map zbg) as:

L†
cg =

{
max

[
‖(zfg− z̄fg)‖2−‖(zfg− zbg)‖2 +m, 0

]}
. (2)

B Hyperparameter setting

For scheduled region drop in section 3.2 of the main paper, we set the square size S to
three for all the experiments. Also, for generating foreground and background masks (Mfg,
Mbg) in contrastive gudiance (Eq.(4)), we set τfg and τbg as in Table 1. Both thresholds are
multiplied with the average intensity of channel-wise pooled attention map AF.

C Quantitative results at three IoU criterions in terms of
MaxBoxAccV2

We further provide the performance upon all the backbones and datasets in terms of MaxBox-
AccV2 on the three IoU criterions, as in Table 2.

Backbone Method MaxBoxAccV2 (%) Top-1 Cls (%)0.3 0.5 0.7 Avg

C
U

B
-2

00
-2

01
1 VGG16 InCA [4] 96.20 77.20 26.75 66.72 73.35

Ours 99.00 88.63 53.88 80.50 73.47

InceptionV3 InCA [4] 95.89 67.93 17.20 60.34 64.01
Ours 99.45 87.95 39.92 75.77 72.49

ResNet50 ACoL [9] 96.96 77.29 25.03 66.43 71.07
Ours 99.36 85.23 35.36 73.32 81.10

Im
ag

eN
et

VGG16 InCA [4] 81.45 63.20 39.20 61.33 69.21
Ours 84.12 66.89 45.03 65.35 68.89

InceptionV3 CutMix [8] 84.05 66.51 41.02 63.86 69.16
Ours 84.64 67.45 42.38 64.83 70.99

ResNet50 InCA [4] 84.26 67.62 43.58 65.15 76.54
Ours 84.54 67.43 44.61 65.53 74.75

Table 2: MaxBoxAccV2 comparison with the state-of-the-art methods on each dataset and
backbone. We also report Top-1 Classification for the reference.

D Additional visualization results of our method

Figure 1 shows more qualitative results on ImageNet and CUB-200-2011 datasets. Our
method covers the area of the target object accurately and also suppresses activations of
the background.
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(a) ImageNet (b) CUB-200-2011

Figure 1: Qualitative results of our method. The ground-truth boxes are in red and predicted
boxes are in green.
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