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Abstract
Recent works have shown the surprising effectiveness of deep generative models in

solving numerous image reconstruction (IR) tasks, even without training data. We call
these models, such as deep image prior and deep decoder, collectively as single-instance
deep generative priors (SIDGPs). The successes, however, often hinge on appropriate
early stopping (ES), which by far has largely been handled in an ad-hoc manner. In this
paper, we propose the first principled method for ES when applying SIDGPs to IR, tak-
ing advantage of the typical bell trend of the reconstruction quality. In particular, our
method is based on collaborative training and self-validation: the primal reconstruction
process is monitored by a deep autoencoder, which is trained online with the historic
reconstructed images and used to validate the reconstruction quality constantly. Exper-
imentally, on several IR problems and different SIDGPs, our self-validation method is
able to reliably detect near-peak performance and signal good ES points. Our code is
available at https://sun-umn.github.io/Self-Validation/.

1 Introduction
Validation-based ES is one of the most reliable strategies for controlling generalization errors
in supervised learning, especially with potentially overspecified models such as in gradient
boosting and modern DNNs [10, 28, 47]. Beyond supervised learning, ES often remains
critical to learning success, but there are no principled ways—universal as validation for su-
pervised learning—to decide when to stop. In this paper, we make the first step toward filling
in the gap, and focus on solving IR, a central family of inverse problems, using training-free
deep generative models.
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List of Acronyms (alphabetic order)
AE Autoencoder
CNN convolutional neural network
DD deep decoder
DGP deep generative prior
DIP deep image prior
DL deep learning
DNN deep neural network
ES early stopping
IR image reconstruction
MIDGP multi-instance DGP
OPT optimization
PG PSNR gap
SG SSIM gap
SIDGP single-instance DGP
SIREN sinusoidal representation network

IR entails estimating an image of interest, denoted
as x, from a measurement y= f (x), where f models the
measurement process. This model covers classical im-
age processing tasks such as image denoising, super-
resolution, inpainting, deblurring, and modern compu-
tational imaging problems such as MRI/CT reconstruc-
tion [8] and phase retrieval [33, 40]. In this paper, we
assume that f is known. Classical approaches normally
formulate IR as a regularized data fitting problem (Ref.
problem (1)) and solve it via iterative optimization al-
gorithms [27]. Recently, DL-based methods have been
developed to either directly approximate the inverse
mapping f−1, or enhance classical optimization algo-
rithms for solving problem (1) by integrating pretrained or trainable DNN modules (e.g.,
plug-and-play or network unrolling; see the recent survey [25]). But, they invariably require
extensive and representative training data. In this paper, we focus on an emerging lightweight
approach that requires no extra training data: the target x is directly modeled via DNNs.

min
x

`(y, f (x))+λR(x) `: fitting loss, R: regularization, λ : regularization parameter (1)

Figure 1: Illustration of the overfitting issue of DIP and DD on image denoising with Gaus-
sian noise (noise level: σ = 0.18; pixel values normalized to [0,1]). The reconstruction qual-
ity (as measured by both PSNR and SSIM) typically follows a skewed bell curve: before
the peak only the clean image content is recovered, but after the peak noise starts to kick in.
Note that DD is not free from overfitting when the network is increasingly over-parametrized
(indicated by the number following “DD-” in the legend).

Single-instance deep generative priors Many deep generative models can be used
for modeling image collections [10, Part III]. For modeling single images, two families of
models stand out: 1) structural models1: the image is modeled as x ≈ Gθ (z). Here, z is a
fixed or trainable seed/code, and G is a trainable DNN—often taken as CNN to bias toward
structures in natural images—parameterized by θ . DIP [41] and DD [12] are two exemplars
in this category, and they only differ in the choice of architecture for G. A variant [26] al-
lows initializing G with a pretrained model. These models should be contrasted with multi-
instance DGPs (MIDGPs, of which GAN inversion [2, 48] is a special case), where G is
pretrained and frozen but z is trainable. Although MIDGPs have also been used to tackle IR

1Some authors call this untrained DNN models/priors; see [29]. But this may be confused with SIDGPs with
prefixed but frozen G (e.g., random) as in [3, 11].
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problems [3, 11], pretraining G requires massive training sets that can cover the target do-
mains. Thus, MIDGPs are not suitable for single-image settings2. 2) functional models: the
(discrete) image x is modeled as the collection of uniform-grid samples, i.e., discretization,
from an underlying continuous function x supported on a bounded region in R2 (sometimes
higher dimensions)3. Now x is parameterized as a DNN xθ , i.e., x = S(xθ ) where S denotes
the sampling process. Note that if x can be learned, in principle one can obtain arbitrary
resolutions for the discrete version x—attractive for computer vision/graphics applications.
These models are called implicit neural representation or coordinate-based multilayer per-
ceptron (MLP) in the literature, of which sinusoidal representation networks (SIRENs, [35])
and MLP with Fourier features [39] are two representative models.

We categorize all these single-image models into the family of SIDGPs. Substituting any
of the SIDGPs into problem (1) and removing the explicit regularization term R, we can now
solve IR problems by DL:

structural OPT : min
θ

`(y, f (Gθ (z))) or functional OPT : min
θ

`(y, f (S(xθ ))). (2)

This simple approach is surprisingly effective in solving numerous IR problems, ranging
from classical image restoration [12, 41], to advanced computational imaging problems [3,
7, 9, 11, 31, 35, 39, 45], and even beyond [22, 30]; see the recent survey [29].

The overfitting issue There is a caveat to all the claimed successes: overfitting. In
practice, we have y ≈ f (x) instead of y = f (x) due to various kinds of measurement noise
and model misspecification, and the DNN used in (2) is also often (substantially) over-
parametrized. So when the objective in Eq. (2) is globally optimized, the final reconstruction
Gθ (z) or S(xθ ) may account for the noise and model errors, alongside the desired image
content. This overfitting phenomenon has indeed been observed empirically on all SIDGPs
when noise is present. Fig. 1 shows the typical reconstruction quality of DIP and DD for
image denoising (Gaussian noise) over iterations. Note the iconic skewed bell curves here:
the reconstruction quality initially monotonically climbs to a peak level—noise effect is al-
most invisible during this period, and then monotonically degrades where the noise effect
gradually kicks in until everything is fit by the overparametrized models. Also, when the
level of overparametrization grows, overfitting becomes more serious (Fig. 1 (b) for DD).
The overfitting phenomenon has also been partly justified theoretically: despite the typical
nonconvexity of the objectives in Eq. (2), global optimization is feasible and happens with
high probability [13, 16]. But it is a curse here.

Prior work on mitigating overfitting Several lines of methods have been developed
to remove the overfitting. DD [12] proposes to control the network size for structural models,
and shows that overfitting is largely suppressed when the network is suitably parameterized.
However, choosing the right level of parameterization for an unknown image with unknown
complexity is no easy task, and underparameterization can apparently hurt the performance,
as acknowledged by [12]. So in practice people still tend to use overparametrization and
counter overfitting with ES [14]; see Fig. 1 (b). The second line adds regularization. [36, 37]
plug in total-variation or other denoising regularizers, and [6] appends weight-decay and
runs SGD with Langevin dynamics (i.e., with additional noise) [44]. But their evaluations
are limited to denoising with low Gaussian noise; our experiments in Section 3 show that
overfitting still exists when the noise level is higher. The third line explicitly models the

2See [21] that tries to bridge the two regimes though.
3In a sense, this is inverting the discretization process in typical image formation. Also, the idea of modeling

continuous functions directly is popular in DL for solving PDEs [43].
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noise in the objective, so that hopefully both the image x and the noise are exactly recovered
when the objective is globally optimized. [46] implements such an idea for additive sparse
corruption. The overfitting is gone, but it is unclear how to generalize the algorithm, which
is delicately designed for sparse corruption only, to other types of noise.

Our contribution In this paper, we take a different route, and capitalize on overfitting
instead of suppressing or even killing it. Specifically, we leave the problem formulation (2)
as is, and propose a reliable method for detecting near-peak performance, which is first of its
kind and also 1) effective: empirically, our method detects near-peak performance measured
in both PSNR and SSIM; 2) fast: our method performs ES once a near-peak performance is
detected—which is often early in the optimization process (see Fig. 1), whereas the above
mitigating strategies push the peak performance to the final iterations; 3) versatile: the only
assumption that our method relies on is the performance curve (either PSNR or SSIM) is
(skewed) bell-shaped. This seems to hold for the various structural and functional models,
tasks, noise types that we experiment with; see Section 3.

After the initial submission, we became aware of two new works [18, 34] that also per-
form ES. [34] proposes an ES criterion based on a blurriness-to-sharpness ratio for natural
images, but it only works for the modified DIP and DD they propose, not the original and
other SIDGPs. [18] focuses on Gaussian noise, and designs an elegant Gaussian-specific
regularized objective to monitor progress and decide ES. Compared to our approach, both
methods are limited in versatility. We defer a detailed comparison with them to future work.

2 Early stopping via self-validation

Figure 2: (left) The MSE curves of learning a natural image vs learning random noise by
DIP. DIP fits the natural image much faster than noise. This induces the typical bell-shaped
reconstruction quality curves (as shown in Fig. 1 and (right) here) when fitting noisy images
using DIP; (right) The PSNR curve vs our online AE reconstruction error curve when fitting
a noisy image with DIP. The peak of the PSNR curve is well aligned with the valley of the
AE error curve. So by detecting the valley of the latter curve, we are able to detect near-peak
points of the former—corresponding to reconstructed images of near-peak quality.

In this section, we describe our detection method taking structural SIDGPs as an exam-
ple; this can be easily adapted for functional SIDGPs.

Bell curves: the why and the bad When y = f (x), solving the structural OPT in (2)
with an overparameterized CNN Gθ using gradient descent has disparate behaviors on nat-
ural images vs pure noise: the term Gθ (z) fits natural images much more rapidly than
fitting pure noise. This is illustrated in Fig. 2 (left) and has been highlighted in numer-
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ous places [12, 13]; it can be explained by the strong bias of convolutional operations to-
ward natural image structures, which are low-frequency dominant, during the early learning
stage [12, 13]. When y ≈ f (x), e.g., the measurement is noisy, intuitively Gθ (z) would
quickly fit the image content with little noise initially, and then gradually fit more noise un-
til reaching the full capacity. This induces the skewed bell curves as shown in Fig. 1 and
Fig. 2 (right). Of course, this argument is handwavy and the fitting effect might not be de-
composable into that of image content and noise separately for complicated f ’s and noise
types (it has been rigorously established for simple cases, e.g., [13]). Nonetheless, the bell-
shaped performance curves are also observed for nonlinear f ’s with complex noise types,
e.g., [4, 20], as well as functional models as we show in Section 3. The downside is overfit-
ting, if no suitable ES is performed. Recent methods that mitigate the overfitting issue defer
the performance peak until the final convergence and work only in limited scenarios.

Bell curves: the good Here we do not try to alter the bell curves but turn them into
our favor, as explained below. In practice, we do not directly observe these curves, as they
depend on the groundtruth x. Let {θk} denote the iterate sequence and {xk} the correspond-
ing reconstruction sequence, i.e., xk = Gθk(z). We only observe {xk} and {θk} directly, and
we know that there exists a k∗ ∈ N so that the subsequence {xk}k≤k∗ has increasingly better
quality and contains very little noise.

Our first technical idea is constructing a quality oracle by training an AE

min
w,v

n

∑
i=1

`AE(si,dv ◦ ew(si)) ew: encoder DNN dv: decoder DNN, (3)

where {si}i≤n is a given training set. AEs are now a seminal tool for manifold learning
and nonlinear dimension reduction [10, Chap. 14]. When {si}i≤n is sampled from a low-
dimensional manifold, after training we expect that s ≈ dv ◦ ew(s) for any s from the same
manifold and s 6≈ dv ◦ ew(s) otherwise. This implies that we can use the AE reconstruc-
tion loss `AE(s,dv ◦ ew(s)) as a proxy to tell if a novel data point s comes from the training
manifold. Thus, if the training set {si}i≤n consists of images very close to x, we can use
`AE(s,dv ◦ ew(s)) to score the reconstruction quality of any s: higher the loss, lower the qual-
ity, and vice versa. If we apply this ideal AE to {xk}, the AE loss curve will have an inverted
bell shape, where the valley corresponds to the quality peak. So we can detect the peak of
the quality curve by detecting the valley of the AE loss curve.

But it is unclear how to ensure that {si}i≤n be uniformly close to x. Our second technical
idea is exploiting the monotonicity of reconstruction quality in {xk}k≤k∗ and {xk}k≥k∗ to
train a sequence of AEs. We take a consecutive length-n subsequence of {xk}k≤k∗ to train an
AE each time, and test the next reconstructed image against the resulting AE. Although the
quality of any initial training set can be low, resulting in poor AEs, it improves over time and
culminates when getting near the xk∗ . Similarly, afterward, the quality gradually degrades.
Away from the peak xk∗ , the quality of xk’s changes rapidly over iterations, and so we expect
high AE loss, regardless of the quality of the AE training set. In contrast, around xk∗ all
xk’s are of high quality, leading to near-ideal AEs and low AE losses. Thus, even after the
practical modification, we expect an inverted bell shape in the AE loss curve, and alignment
of the quality peak with the loss valley again, as confirmed in Fig. 2 (right).

Our method: ES by self-validation We now only need to detect the valley of the AE
loss curve due to the blessed alignment discussed above. To sum up our algorithm: we train
the structural OPT and an AE side-by-side, feed the most recent n reconstructed images to
train the AE, and then test the next image for AE loss. We make two additional modifications
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Algorithm 1 Structural OPT with ES for IR
Input: y, f , `, `AE, G, θ (0) (of Eq. (2)), w(0), v(0) (of Eq. (3)), k = 0, window size n, patience number p
1: while not stopped do
2: update θ via one iterative step on Eq. (2) to obtain θ (k+1) and x(k+1)

3: update w,v via one iterative step on Eq. (3) using {xi}k
i=k−n+1 to obtain w(k+1),v(k+1)

4: calculate the reconstruction loss `AE(x(k+1),dv(k+1) ◦ ew(k+1) (x(k+1)))
5: if no improvement in the reconstruction loss in p consecutive iterations then
6: early stop and exit
7: end if
8: k = k+1
9: end while

Output: the reconstructed image x(k−p+1)

for better efficiency: 1) the AE is updated only once per new training set instead of being
greedily trained, i.e., an online learning setting. This helps to substantially cut down the
learning cost and save hyperparameters while remaining effective; and 2) to ensure the AEs
learn the most compact representations, we borrow the idea of IRMAE [17] and add several
trainable linear layers in the AEs before feeding the hidden code to the decoder. Our whole
algorithmic pipeline is summarized in Algorithm 1.

3 Experiments
Setup We experiment with 3 SIDGPs (DIP 4, DD5, SIREN6) and 4 IR problems (image
denoising, inpainting, MRI reconstruction, and image regression). Unless stated otherwise,
we work with their default DNN architectures, optimizers, and hyperparameters. We fix the
window size n = 256, and the patience number p = 500 for denoising and inpainting and
p = 200 for MRI reconstruction and image regression. For training the collaborative AEs,
ADAM is used with a learning rate 10−3. To assess the IR quality, we use both PSNR [5]
and SSIM [42]. To evaluate our detection performance, we use ES-PG which is the absolute
difference between the detected and the true peak PSNRs; similarly for ES-SG. Sometimes
we also report BASELINE-PG which measures the difference between the peak and the
final overfitting PSNRs; similarly for BASELINE-SG. For most small-scale experiments,
we repeat all experiments 3 times and report means and standard deviations. All omitted
details and experimental results can be found in the Appendix.

Image denoising The power of DIP and DD was initially only demonstrated on Gaus-
sian denoising. Here, to make the evaluation more thorough, we also experiment with de-
noising impulse, shot, and speckle noise, on a standard image denoising dataset7 (9 images).
For each of the 4 noise types, we test a low and a high noise level, respectively. The mean
squares error (MSE) is used for Gaussian, shot, and speckle noise, while the `1 loss is used
for impulse noise. To obtain the final degraded results, we run DIP for 150K iterations.

The denoising results are measured in terms of the gap metrics are summarized in Fig. 3.
Note that our typical detection gap is ≤ 1 measured in ES-PG, and ≤ 0.1 measured in ES-
SG. If DIP just runs without ES, the degradation of quality is severe, as indicated by both
BASELINE-PG and BASELINE-SG. Evidently, our DIP+AE can save the computation and

4https://github.com/DmitryUlyanov/deep-image-prior
5https://github.com/reinhardh/supplement_deep_decoder
6https://vsitzmann.github.io/siren/
7http://www.cs.tut.fi/~foi/GCF-BM3D/index.html#ref_results
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Figure 3: DIP+AE for image denoising. Each columns represents a distinct noise type, and
the 1st row contains the PGs, and 2nd in SGs. The L and H in the horizontal annotations
indicate low and high noise levels, respectively.

the reconstruction quality, and return an estimate with near-peak performance for almost
all images, noise types, and noise levels that we test. The Baboon image is an outlier. It
contains substantial high-frequency textures, and actually the peak PSNR/SSIM itself is also
much worse compared to other images. We suspect that dealing with similar kinds of images
can be challenging for DIP and DD and our detection method, which warrants future study.

Figure 4: DIP+AE on IN-100. 1st row: ES-PGs; 2nd row: ES-SGs.

We further test our method on 100 randomly selected images from ImageNet [32], de-
noted as IN-100. We follow the same evaluation protocol as above, except that we only
experiment a medium noise level and we do not estimate the means and standard devia-
tions; the results are reported in Fig. 4. It is easy to see that the ES-PGs are concentrated
around 1 and the ES-GSs are concentrated around 0.1, consistent with our observation on
the small-scale dataset above.

We compare DIP+AE with three other competing methods that try to eliminate overfit-
ting, i.e., DIP+TV [36, 37] and SGLD [44] on Gaussian denoising, and DOP [46] on remov-
ing sparse corruptions. We take a medium noise level. All these methods claim to eliminate
the overfitting altogether, and so we directly compare the detected PSNRs (SSIMs) by our
method and the final PSNRs returned by their methods at the final convergence. The results
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Table 1: DIP+AE, DIP+TV, and SGLD on Gaussian denoising. The best PSNRs are colored
as red; the best SSIMs are colored as blue.

PSNR ↑ SSIM ↑

DIP+AE DIP+TV SGLD DIP+AE DIP+TV SGLD

House 30.824(0.236) 18.866(0.093) 21.800(2.430) 0.834 (0.008) 0.174 (0.006) 0.495 (0.152)

Peppers 26.471 (0.249) 19.000 (0.004) 20.516 (0.263) 0.688 (0.008) 0.238 (0.001) 0.453 (0.017)

Lena 27.462 (0.602) 18.961 (0.028) 20.217 (0.808) 0.744 (0.003) 0.253 (0.001) 0.447 (0.051)

Baboon 19.453 (0.251) 18.416 (0.024) 19.111 (0.091) 0.335 (0.008) 0.467 (0.0) 0.572 (0.003)

F16 27.644 (0.114) 19.183 (0.122) 20.431 (0.091) 0.818 (0.005) 0.248 (0.005) 0.457 (0.008)

Kodak1 24.455 (0.111) 18.688 (0.088) 19.555 (0.049) 0.649 (0.006) 0.409 (0.006) 0.528 (0.003)

Kodak2 26.886 (0.218) 19.535 (0.160) 20.569 (0.629) 0.677 (0.006) 0.243 (0.014) 0.430 (0.046)

Kodak3 27.894 (0.311) 18.904 (0.181) 19.921 (0.194) 0.761 (0.002) 0.187 (0.008) 0.379 (0.012)

Kodak12 28.269 (0.239) 18.998 (0.183) 19.974 (0.240) 0.727 (0.003) 0.193 (0.011) 0.391 (0.015)

are tabulated in Table 1 and Table 2, respectively. It seems that 1) DIP+TV and SGLD do not
quite eliminate overfitting when different images and noise levels (noise levels used in the
respective papers are relatively low) than they experimented with are used; and 2) our detec-
tion method, i.e., DIP+AE, returns far better reconstruction than DIP+TV and SGLD (except
on Baboon). For the comparisons with DOP (presented in Table 2), our method (DIP+AE)
can detect reasonable good ES points, which is consistent with the finding in Fig. 3, and
requires far fewer optimization iterations compared with that of DOP. On the other hand,
the detected performance in terms of PSNR and SSIM by our method slightly lag behind
that of DOP, which however is expected as there is an inherent performance gap between
DIP and DOP, which has been confirmed in [46]. Nevertheless, our purpose in this work
is finding an appropriate ES points for DIP instead of improving its performance, we thus
leave how to boost DIP performance as a future research direction. Furthermore, Fig. 9 in the
Appendix visualizes the reconstruction results of both DIP+AE and DOP. Although there is
a slightly disparity in PSNR values between DIP+AE and DOP, visually they lead to similar
reconstruction qualities and there is almost no perceivable differences.

Table 2: DOP vs. DIP+AE on removing sparse corruptions
Metrics Models House Peppers Lena Baboon F16 Kodak1Kodak2Kodak3Kodak12

PSNR ↑
DOP 41.688 31.227 32.547 21.802 31.300 26.626 31.427 32.206 32.223

DIP+AE 38.947 28.260 30.683 19.392 28.684 24.933 30.358 30.592 30.790

SSIM ↑
DOP 0.957 0.823 0.869 0.614 0.925 0.777 0.821 0.887 0.855

DIP+AE 0.946 0.777 0.836 0.357 0.887 0.698 0.770 0.855 0.819

Iteration ↓
DOP 149041 84583 90427 36535 87824 63533 92821 76279 84812

DIP+AE 3038 1419 1665 381 1711 1184 1026 1183 1397

We further compare our method with a group of baseline methods based on no-reference
image quality metrics: the classical BRISQUE [23] and NIQE [24], and a state-of-the-art,
NIMA (both technical quality and aesthetic assessment) [38] which is based on pretrained
DNNs. We experiment with medium noise level across all four noise types with DIP, run DIP
until the final convergence (i.e., overfitting), and then select the highest quality one from
among all the intermediate reconstructions according to each of the three metrics, respec-
tively. Performance gaps on medium Gaussian and impluse noise are presented in Table 3,
on shot noise and speckle noise presented in Table 9 in the Appendix. Told from Table 3
and Table 9, our method is a clear winner: in most cases, our method has the smallest gaps.
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Moreover, while our detection gaps are uniformly small (with rare outliers), the three base-
line methods can frequently lead to intolerably large gaps.

Table 3: The performance gaps of BRISQUE [23], NIQE [24], NIMA [38], and DIP+AE on
Gaussian and impulse noises. For NIMA, we report both technical quality assessment (the
number before “/”) and aesthetic assessment (the number after “/”). The best PSNR gaps are
colored as red; the best SSIM gaps are colored as blue.

Gaussian noise Impulse noise

Gap in PSNR ↓ Gap in SSIM ↓ Gap in PSNR ↓ Gap in SSIM ↓

BRISQUE NIQE NIMA DIP+AE BRISQUE NIQE NIMA DIP+AE BRISQUE NIQE NIMA DIP+AE BRISQUE NIQE NIMA DIP+AE

House 10.961 10.961 12.906/3.361 1.057 0.408 0.408 0.659/0.122 0.015 25.227 9.886 25.227/21.403 5.832 0.835 0.052 0.835/0.344 0.005

Peppers 3.715 5.053 4.893/5.204 0.603 0.271 0.341 0.334/0.345 0.006 12.872 2.296 2.117/9.701 0.305 0.404 0.013 0.012/0.198 0.012

Lena 4.681 7.194 10.180/1.581 0.845 0.260 0.397 0.537/0.054 0.008 2.374 6.204 15.646/12.674 0.231 0.011 0.039 0.376/0.209 0.002

Baboon 0.247 0.694 1.375/3.450 2.583 0.008 0.014 0.174/0.416 0.304 7.092 1.312 1.157/12.707 1.426 0.224 0.013 0.153/0.462 0.231

F16 6.236 8.128 1.336/3.991 0.850 0.429 0.530 0.036/0.088 0.023 14.180 5.505 8.621/9.372 0.495 0.369 0.036 0.111/0.135 0.006

Kodak1 2.558 3.158 6.723/19.546 0.520 0.069 0.103 0.275/0.626 0.029 5.913 0.232 11.791/10.366 0.538 0.142 0.007 0.410/0.584 0.048

Kodak2 6.959 6.855 9.094/0.143 0.353 0.361 0.365 0.516/0.004 0.007 18.575 0.312 13.870/9.657 0.429 0.741 0.014 0.304/0.127 0.026

Kodak3 2.029 7.686 19.834/19.716 0.574 0.152 0.475 0.731/0.624 0.005 16.867 8.769 13.217/2.031 1.959 0.351 0.077 0.180/0.005 0.046

Kodak12 7.066 8.093 6.436/3.075 0.788 0.419 0.456 0.384/0.178 0.007 16.781 1.785 9.139/2.685 1.068 0.817 0.003 0.087/0.008 0.048

MRI reconstruction We now test our detection method on MRI reconstruction, a
classical medical IR problem involving a nontrivial linear f . Specifically, the model is
y = f (x)+ ξ = F(x)+ ξ , where F is the subsampled Fourier operator and ξ models the
noise encountered in practical MRI imaging. Here, we take 8-fold undersampling and
choose to parametrize x using a DD, inspired by the recent work [14]. Due to the heavy
overparametrization of DD, [14] needs to choose an appropriate ES to produce quality re-
construction. We report the performance in Fig. 5 (results for all randomly selected samples
can be found in the Appendix). Our method is able to signal stopping points that are reason-
ably close to the peak points, which also yield reasonably faithful reconstruction.

Figure 5: Results for MRI reconstruction. (left) The solid vertical lines indicate the peak per-
formance iterate while the dash vertical lines are ES iterate detected by our method. (right)
Visualizations for Sample 6 (1st row) and Sample 9 (2nd row).

Image regression Now we turn to SIREN [35], a recent functional SIDGP model
that is designed to facilitate the learning of functions with significant high-frequency com-
ponents. We consider a simple task from the original task, image regression, but add in some
Gaussian noise. Mathematically, the y = x+ ε , where ε ∼iid N (0,0.196), and we are to fit
y by performing functional OPT listed in Eq. (2). Clearly, when the MLP used in SIREN is
sufficiently overparamterized, the noise will also be learned. We test our detection method
on this using the same 9-image dataset as in denoising. From Fig. 6, we can see again that our
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method is capable of reliably detecting near-peak performance measured by either ES-PG or
ES-SG, much better than without implementing any ES.

Figure 6: Results for image regression.

Ablation studies There are two crucial parameters—the window size n and the pa-

Figure 7: Ablation study for the sensitivity of the detection performance with respect to the
patience number p and window size n.

tience number p—dictating the performance of our detection method. Here, we evaluate
the sensitivity of the performance to n and p on two settings: 1) fix n = 256, and vary p in
{100,300,500,700,900}; 2) fix p = 500, and vary n in {32,64,128,256,512}. We again use
the 9-image dataset, simulate medium-level Gaussian noise, and adopt DIP. For simplicity,
we only report the gaps averaged over all images. Fig. 7 summarizes the results. Two ob-
servations: 1) our detection method is relatively insensitive to the two parameters; 2) large p
and n seem to benefit the performance more. To be sure, we need p to be at least reasonably
large so that our detection will not be trapped by local spikes. However, larger n requires
better GPU resources to hold and compute with the data. In addition, we also explore the
influence of the learing rates—for SIDGP and AE, respectively—on the performance. For
this, we again consider medium Gaussian noise with DIP, and freeze n = 256 and p = 500.
We fix one of the two learning rates while changing the other, and present the results in
Table 4. We observe that despite different learning rates lead to slightly different levels of
performance, the variation is not significant, in view that our typical ES-PG is less than 1,
and typical ES-SG less than 0.1 in our previous evaluation.

Table 4: The impacts of different learning rates.

Learning Rate
(vary) DIP + (fixed .001) AE (fixed .01) DIP + (vary) AE

ES-PG ↓ ES-SG ↓ ES-PG ↓ ES-SG ↓

0.01 0.756 (0.629) 0.044 (0.093) 0.814 (0.623) 0.043 (0.090)

0.001 0.593 (0.497) 0.043 (0.085) 0.713 (0.628) 0.045 (0.098)

0.0001 1.073 (0.984) 0.074 (0.118) 1.216 (1.036) 0.071 (0.098)
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