
HOU ET AL.: PARAMETER EFFICIENT DYNAMIC CONVOLUTION VIA TENSOR DECOMP1

Parameter Efficient Dynamic Convolution via
Tensor Decomposition
Zejiang Hou
zejiangh@princeton.edu

Sun-Yuan Kung
kung@princeton.edu

Department of Electrical Engineering
Princeton University
Princeton, NJ, USA

Abstract

Dynamic convolution has demonstrated substantial performance improvements for
convolutional neural networks. Previous aggregation based dynamic convolution meth-
ods are challenged by the parameter/memory inefficiency, and the learning difficulty due
to the scalar type attention for aggregation. To rectify these limitations, we propose a
parameter efficient dynamic convolution operator (dubbed as PEDConv) that learns to
discriminatively perturb the spatial, input and output filters of a shared base convolu-
tion weight, through a tensor decomposition based input-dependent reparameterization.
Our method considerably reduces the number of parameters compared to prior arts and
limit the computational cost to maintain inference efficiency. Meanwhile, the proposed
PEDConv significantly boosts the accuracy when substituting standard convolutions on a
plethora of prevalent deep learning tasks, including ImageNet classification, COCO ob-
ject detection, ADE20K semantic segmentation, and adversarial robustness. For exam-
ple, on ImageNet classification, PEDConv applied to ResNet-50 achieves 80.5% Top-1
accuracy at almost the same computation cost as static convolutional baseline, improving
previous best dynamic convolution method by 1.9% accuracy. Moreover, the proposed
method can be readily extended to both input and spatial dynamic regime with adap-
tive reparameterization at different spatial locations, in which case ResNet-50 achieves
79.3% Top-1 accuracy while reducing 44% FLOPs compared to the baseline model.

1 Introduction
Deep convolutional neural networks have made significant progress in a wide range of com-
puter vision tasks including image classification, object detection, and semantic segmenta-
tion. The powerful representation ability of CNNs stems from that different convolution
kernels are responsible for extracting diverse information encoded across channels and lay-
ers. However, current design of convolutional layers applies the same convolutional weight
to process different input images. This deprives convolution of the ability to adapt to diverse
visual patterns with respect to different images. Consequently, more effective information
can only be captured when increasing the capacity of the network (e.g., adding more convo-
lutional layers and increasing the kernel or channel size). The best-performing CNNs usually
involve high computational cost and large memory footprint, impeding their deployment on
environments with strict latency requirements and limited computing resources.
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Different from static convolutions, to adapt to the diverse visual features, recent studies
focus on using input-dependent convolution weights to process different inputs, i.e., dynamic
convolution. Prior arts [4, 35] utilize a set of K parallel convolution weights {Wk} instead
of a single static one. These weights are linearly combined W(x) = ∑k αk(x) ·Wk for each
individual input x via the input-dependent attention α(x), so that the model capacity can be
increased while maintaining the inference efficiency. However, aggregation based dynamic
convolutions have several limitations: (1) The use of K (K can be up to 32 in [35]) convo-
lution weights brings in considerable parameter and model memory overheads; (2) the over-
parameterized network is prone to overfitting, thus requires meticulously designed training
techniques [35]; (3) the scalar type attention αk multiplied to the convolution weight Wk
imposes optimization challenge: if the attention value is too small, the corresponding weight
will be insufficiently trained. Hence, existing method [4] applies softmax normalization with
very large temperature to the attention values for training dynamic convolutions.

Our contributions. To rectify the above limitations, we propose a novel parameter ef-
ficient dynamic convolution, PEDConv, which dynamically reparameterizes the weights of
each different filters and kernels w.r.t. different inputs. The core component of PEDConv
is a Canonical Polyadic tensor decomposition based reparameterization applied to the base
weight, where the low-rank decomposition components are made conditioned on the input.
In this way, PEDConv can capture both generic information shared among inputs in base
weight optimization, and input specification in learning the dynamic reparameterization. In
order to learn to generate the decomposition components, we propose to learn a conditional
distribution w.r.t. the input, in conjunction with mutual information maximization between
the generated components and input to enforce the input-dependency. PEDConv can be
readily applied to substitute standard convolutions in diverse CNN architectures including
ResNet, MobileNet, EfficientNet with negligible computation cost increase. To demonstrate
the effectiveness and generality of PEDConv, we experiment with a wide variety of deep
learning tasks including ImageNet classification, COCO object detection, ADE20K seman-
tic segmentation, and adversarial robustness. PEDConv achieves superior accuracy while
requiring fewer parameters and FLOPs compared to the state-of-the-art methods.

2 Related Works
This section mainly covers the spectrum of related works on dynamic neural networks, and
we clarify the difference of PEDConv with previous dynamic convolution methods. Ben-
efiting from the data dependency mechanism, dynamic neural networks can flexibly adapt
their parameters to match the diverse visual patterns and boost the representation ability. [8]
introduces a hyper-network to generate the parameters for the main network. Similarly, [29]
uses auxiliary network to dynamically generate the convolution filters for the mask head in
instance segmentation task. [11] re-weights different channel-wise feature-maps based on
the global context for each block. [15] adaptively adjusts each channel’s receptive field size
based on softmax attention guided by multiple scales of input information. [5] adapts the
slopes and intercepts of two linear functions in ReLU activation. [27] proposes dynamic
group convolution that adaptively selects input channels to be connected within each group.
[13] dynamically adjusts the filter numbers of the network with respect to different inputs.
[7] directly re-samples from the original kernel space to adapt the effective receptive field for
handling object deformations. For neural machine translation, [33] predicts separate convo-
lution kernels based on the current time-step in order to determine the importance of context
elements. Dynamic convolutions in [4, 35] aggregate multiple convolution kernels based on
the input-dependent attention values. [20] uses grouped fully-connected layers to generate
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dynamic convolution weights directly. [16] proposes dynamic channel fusion to learn addi-
tive off-set matrices together with channel-wise attention. [3, 14, 40] propose spatial-specific
dynamic convolution by making the filters adaptive to different spatial regions or locations.
We highlight the difference of our method: (1) PEDConv entails a Canonical Polyadic ten-
sor decomposition [30, 38] based reparameterization that captures both generic information
(base weights are shared across inputs) and input specification (decomposition components
varies for different inputs); (2) we propose to learn the conditional distribution with mutual
information maximization, compared to deterministic weight generation in prior arts [4, 35],
(3) PEDConv demonstrates better parameter-efficiency and superior accuracy compared to
prior arts [4, 35].

3 PEDConv Methodology
The goal of this work is to design a dynamic convolution which dynamically reparameter-
izes the weights of each different filters and kernel positions w.r.t. different inputs, while
being more parameter-efficient and less memory demanding. To this end, we reparameterize
the base convolution weights as A(x)�Wbase, where each element of A(x) ∈ RCout×Cin×k×k

is dependent on input x and � represents the Hadamard product. This formulation can be
viewed as leveraging “slow” weights Wbase that are shared across inputs and capture general
information, and “fast” weights A(x) that learn specific information for adaptation to each
individual input. Moreover, in our formulation, the direction and amount of perturbation
for each element of the base convolution weight can vary per-input basis, instead of being
simply distinct up to a scaling factor across different inputs when one uses scalar type atten-
tion. However, generating A(x) for each input can introduce considerable parameters and
computation overheads, since A(x) has the same tensor shape as the convolution weight. To
circumvent this problem, we propose a tensor decomposition based reparameterization for
parameter-efficient dynamic convolution (PEDConv), which is formulated as:

W(x) = Wbase ×1 diag(γ(x)) ×2 diag(φ(x)) ×3 diag(ψ(x)) (1)

where γ(x) ∈ RCout , φ(x) ∈ RCin , ψ(x) ∈ Rk2
, Wbase ∈ RCout×Cin×k×k. The operator ×i de-

notes the i-mode product between a tensor and a matrix. diag(·) converts vector to diagonal
matrix. Note that W(x) represents convolution weights dependent or conditioned on x.

Eq.(1) performs the rank-1 decomposition of A(x) with three components γ(x), φ(x),
and ψ(x), capturing the input dynamics for the input-side filters, output filters and kernels,
respectively. Formally, the decomposition can be expressed as: A(x)≈ γ(x)⊗φ(x)⊗ψ(x),
where ⊗ stands for the outer product of vectors. The kernel dimension is not decomposed
since the kernel size is usually small in modern CNNs (e.g., 3× 3). Therefore, our con-
volution weight reparameterization can be equivalently computed as the Hadamard product
between the input-dependent decomposition and the base weight:

W(x) = Wbase� (γ(x)⊗φ(x)⊗ψ(x)) (2)

Due to the tensor decomposition, the parameters needed for generating A(x) can be greatly
reduced. That is, we only need Cout +Cin + k2 parameters to dynamically perturb each ele-
ment of a base convolution weight of size Cout×Cin×k2. To summarize, PEDConv with the
proposed input-dependent tensor decomposition based reparameterization is given as:

Yt,w′ ,h′ =
Cin

∑
s=1

k

∑
j=1

k

∑
i=1

(
γ(x)tφ(x)sψ(x) ji[Wbase]t,s, j,i

)
Xs,w j ,hi (3)
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where w j = (w′−1)∆+ j− p, hi = (h′−1)∆+ i− p, ∆ is stride and p is zero-padding. Fol-
lowing the standard design in CNN, we use batch normalization and an activation function
(e.g., ReLU) after PEDConv when substituting it for static convolutions.

Learning the decomposition components. For notation simplicity, we combine the de-
composition components as g(x) = [γ(x);φ(x);ψ(x)] ∈ RCout+Cin+k2

. To dynamically gen-
erate g(x) w.r.t. different x, we propose to learn the conditional prior distribution denoted by
p(g|x;θ ,π), where θ represents the base convolution weights and π refers to the weights of
the generator that generates g. In our case of training with the conditional prior, the marginal
log-likelihood is obtained as: log p(Y|X;θ ,π) = ∑

N
i=1 log Egi∼p(gi|xi;θ ,π)[p(yi|xi,gi;θ)]. In

practice, we consider its lower bound derived by the variational inference method (see sup-
plementary for details), which is given as the expected loss over the conditional prior:

log p(Y|X;θ ,π)≥
N

∑
i=1

Egi∼p(gi|xi;θ ,π)[log p(yi|xi,gi;θ)] (4)

To evaluate the gradient on this lower bound objective w.r.t. θ and π , we use the reparametriza-
tion trick introduced by [12]. Specifically, we assume the conditional distribution p(g|x;θ ,π)
has the form of Gaussian with mean µ and diagonal covariance diag(σ2). At each convo-
lution layer, the generator module (denoted by Gπ ) would take the preceding layer’s output
feature-maps (denoted by X) as input, and output the distribution parameters (mean µ and
standard deviation σ ) of the conditional distribution. The actual CP decomposition compo-
nents g are sampled from this conditional distribution using the reparameterization trick:

[µ i,σ i] = Gπ(Xi), gi ∼ p(gi|xi;θ ,π) =N (µ i,diag(σ
2
i )) = µ i +σ i� ε (5)

where we use subscript i to emphasize per-input basis. ε ∼N (0,I) is for reparameterization
trick so that our training objective (i.e., Monte Carlo estimate [12] of the expectation in
Eq.(4)) is differentiable w.r.t. θ and π with the presence of sampling operation. Following
[25], we perform a deterministic inference without sampling g = E[g|x] at testing time.

Enforcing input-dependency via info-max. To enforce the input-dependency of PED-
Conv, we propose to maximize the mutual information (MI) between the generated g and
the input data during training. This MI objective can be described as: max I((xi,yi);gi).
Note that the information maximization occurs only at training time for learning the model
parameters, which is why we can incorporate the label information into the MI objective.
Based on the chain rule of MI, the objective can be rewritten as: max I(xi;gi)+ I(yi;gi|xi).
Directly computing the MI is intractable since the true posterior distributions are unknown.
Therefore, we use Variational Information Maximization [1] to derive a lower bound of the
MI objective (see supplementary for details), which is given as:

max
θ ,π

E[log p(yi|xi,gi;θ)]+λmax
π,θ ′

log p(xi|gi;θ
′)] (6)

We omit the constant entropy terms and the subscript of the expectation for clarity.
The first term in Eq.(6) maximizes the log likelihood of label for the training data,

which is equivalent to minimizing the cross-entropy loss in classification. This task loss
optimizes the base convolution weights and the generator module weights. For the second
term, p(xi|gi;θ

′) is the approximated posterior for deriving the variational lower bound of
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MI, which is equivalent to the decoding term in the variational auto-encoder [12]. Follow-
ing [12], we assume this decoding term takes the form of Gaussian. A known fact is that
maximizing the log likelihood of Gaussian is equivalent to minimizing the MSE reconstruc-
tion loss. Specifically, we instantiate the decoding term p(xi|gi;θ

′) by a decoder MLP with
weights θ ′. This decoder MLP has two fully-connected layers with ReLU in-between, and
it only appears at training time for MI maximization. The input of the decoder MLP is gi,
which is mapped to the reconstructed GAP feature by the decoder MLP, because the GAP
feature is the direct input to p(gi|xi;θ ,π) (detailed out in following section on generator
module design). The intuition is that the generated (more concretely, the sampled) CP de-
composition components gi should be able to reconstruct the inputs of the generator (which
is the GAP feature) in order to achieve better input-dependency. During training, in addi-
tion to the cross-entropy loss, we also minimize the MSE loss between the reconstructed
GAP feature and the original GAP feature. This MSE loss optimizes the generator module
weights and decoder MLP weights. With this training objective, the generated CP decom-
position components for PEDConv will be able to carry the information about each specific
input data while optimizing the task loss.

Generator module design. The input-dependent CP decomposition components g(x) are
generated based on the input feature-maps X for the corresponding layer (equivalently, the
output feature-maps from preceding layer). To make the generator compact and efficient,
we employ a bottleneck two-layer MLP. Firstly, global average pooling (GAP) is applied to
obtain the global spatial information of the input feature-maps. Then, two fully connected
layers with a ReLU activation function in-between are applied to generate the distribution
parameters for the conditional distribution in Eq.(5):

[µ,σ ] = Gπ(X) = Wfc1 · (Wfc2 ·
1

HW ∑
i∈H, j∈W

Xc,i, j)+ (7)

We denote the two-layer MLP generator by Gπ(·) with weights π , that takes as input the GAP
feature of corresponding layer, and output mean µ and std σ of p(g|x;θ ,π). π represents
the learnable parameters Wfc1 ∈ R(Cout+Cin+k2)×Cin/r,Wfc2 ∈ RCin/r×Cin , where r here is the
reduction factor in the bottleneck MLP. X ∈ RCin×H×W denotes the input feature-maps, and
(·)+ is ReLU activation. After computing the vector g(x) by Eq.(5),(7), we can obtain the
three CP decomposition components γ(x),φ(x),ψ(x) in Eq.(1) by chunking g(x).

Complexity analysis. Given that the spatial dimension is reduced for generating the input-
dependent decomposition components, the computation cost of PEDConv mainly comes
from the convolution operation. Specifically, the FLOPs complexity of PEDConv can be
calculated by (HWCoutCink2)+ ((2Cin +Cout + k2)Cin/r+ 2CoutCink2), where the first term
counts the convolution operation while the second term counts the decomposition compo-
nents generator and application. The second term has much less computation compared to
the convolution operation, making PEDConv almost as efficient as the static convolution. In
terms of parameter complexity, static convolution and vanilla dynamic convolution [4, 35]
require CoutCink2 and KCoutCink2 (K ≥ 4) parameters, respectively. In contrast, PEDConv re-
quires CoutCink2 for the base convolution weights, and an additional (2Cin +Cout + k2)Cin/r
parameters are required by the bottleneck MLP for generating the decomposition compo-
nents. Since the second term is relatively negligible, the proposed PEDConv has much less

Citation
Citation
{Kingma and Welling} 2013

Citation
Citation
{Kingma and Welling} 2013

Citation
Citation
{Chen, Dai, Liu, Chen, Yuan, and Liu} 2020{}

Citation
Citation
{Yang, Bender, Le, and Ngiam} 2019



6HOU ET AL.: PARAMETER EFFICIENT DYNAMIC CONVOLUTION VIA TENSOR DECOMP

parameter complexity than the aggregation based dynamic convolutions that linearly com-
bines multiple weights with scalar type attentions.

Generalized rank-R decomposition. Eq.(2) gives a special case of rank-1 decomposition
of A(x). A generalized rank-R Canonical Polyadic (CP) tensor decomposition can be ex-
pressed as the sum of R rank-1 tensors that are formulated as the outer product of rank-1 com-
ponents: A(x) ≈ ∑

R
r=1 γr(x)⊗φ r(x)⊗ψr(x). R influences the parameter efficiency, where

the smaller the R is, the more reduced the parameters. PEDConv with the rank-R CP decom-
position is given as: W(x) =∑

R
r=1 Wbase×1diag(γr(x))×2diag(φ r(x))×3diag(ψr(x)).

4 Experiments
To verify the efficacy and generality of PEDConv, we evaluate on a variety of deep learning
tasks with diverse CNN architectures. Our method is implemented in PyTorch. All experi-
ments are run on NVIDIA Tesla V100 GPUs. In terms of implementation, we use rank-1 CP
decomposition for PEDConv in Eq.(1). We set the reduction factor in the bottleneck MLP
to r = 16, and the loss balance factor in Eq.(6) to λ = 1e−3. To keep our method simple
and generic, these hyper-parameters are kept constant for all experiments. For other training
hyper-parameters, we use the default settings and specify them in following subsections.

4.1 Image classification
We evaluate our method on ImageNet [6], which has 1000 classes and consists of 1.28M
training images and 50K validation images. PED convolution is embedded into diverse ad-
vanced CNN architectures, including ResNet-18/50, MobileNetV1/V2, and EfficientNet, to
substitute all standard convolution layers except the first layer. All models are trained by the
SGD optimizer with a momentum of 0.9 and a batch-size of 512. For training ResNets, we
set the weight decay to 1e-4. The initial learning rate is set to 0.512, and decays by a cosine
scheduler for total 120 epochs. For training MobileNets, we set the weight decay to 4e-5.
The initial learning rate is set to 0.1 and decays by cosine scheduler for total 250 epochs.
For training EfficientNet, we follow the same procedure as [28]. We evaluate single-crop
Top-1 accuracy, and use input resolution 224× 224 for both training and testing. Standard
data augmentations described in PyTorch official repository are adopted.

The results are reported in Table 1, including comparisons with state-of-the-art meth-
ods. As shown, with comparable FLOPs and parameters, PEDConv consistently boosts the
accuracy over baseline models. For example, PEDConv-MobileNetV2/ResNet-50 acheives
3.5%/4.3% accuracy gain over MobileNetV2/ResNet-50 with only 2% extra FLOPs, respec-
tively. Moreover, PEDConv requires noticeably fewer model parameters compared with the
state-of-the-art dynamic convolutions. For MobileNetV2, PEDConv only requires 43% of
the parameters of DY-Conv and 17% of the parameters of CondConv, while achieving better
Top-1 accuracy with less FLOPs. For ResNet-18/50, PEDConv only requires 28% of the pa-
rameters of DY-Conv/CondConv, while improving the accuracy by 1.5%/1.9%, respectively.
In addition, on more powerful NAS-based mobile network EfficientNet-B0, our method still
achieves 1.1% accuracy gain over the strong baseline. These results demonstrate the effec-
tiveness, efficiency and compactness of our method.

4.2 Object detection
We further verify the efficacy and generality of PEDConv applied to SSD [19] on COCO2017
[17] object detection. Following [19], we train SSD on the COCO train2017 split containing
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Model Method Params FLOPs Top-1 (%)

MobileNetV1

Baseline 4.2M 569M 71.9
DSNet [13] - 565M 74.5

DR-Conv [3] - 610M 75.5
CondConv [35] 33.0M 600M 73.7

Ours 5.1M 579M 75.9

MobileNetV2

Baseline 3.5M 300M 72.0
DK [7] 11.1M 760M 74.8
CA [9] 4.0M 310M 74.3

DCD [16] 5.5M 326M 75.2
DY-Conv [4] 11.1M 313M 75.2

CondConv [35] 27.5M 329M 74.6
Ours 4.8M 307M 75.5

EfficientNet-B0

Baseline 5.3M 391M 77.1
CA [9] 5.4M 400M 76.9

CondConv [35] 13.3M 402M 77.8
Ours 7.2M 400M 78.2

(a) Light-weight CNN models.

Model Method Params FLOPs Top-1 (%)

ResNet-18

Baseline 11.7M 1.81G 70.4
DCD [16] 14.0M 1.83G 73.1

DY-Conv [4] 42.7M 1.85G 72.7
Ours 11.9M 1.83G 74.2

ResNet-50

Baseline 25.6M 4.1G 76.2
DK [7] 81.2M 4.6G 78.5
SK [15] 27.5M 4.5G 79.2

DCD [16] 30.7M 4.2G 77.9
WeightNet [20] 31.1M 4.2G 77.5
CondConv [35] 104.8M 4.2G 78.6

Ours 28.6M 4.2G 80.5
(b) Non-compact CNN models.

Table 1: Results of comparing PEDConv with state-of-the-arts on ImageNet. PEDConv outperforms
previous dynamic convolutions [4, 35] in terms of higher accuracy and fewer parameters/FLOPs.

Detector Backbone Params FLOPs APbbox APbbox
50 APbbox

75 APbbox
S APbbox

M APbbox
L

SSD300 ResNet-50 22.9M 20.2G 25.2 42.7 25.8 7.3 27.1 40.8
PEDConv-ResNet-50 24.4M 20.3G 29.3 48.2 30.4 9.4 31.9 47.9

Table 2: Results of PEDConv applied to SSD300 on COCO object detection.

about 118k images and test on the val2017 split containing 5k images. The input size is fixed
to 300× 300. We adopt SGD optimizer with a momentum of 0.9, a batch-size of 64, and a
weight decay of 5e-4. The model is trained with a learning rate of 1e-3 for 160k iterations,
which decays by 10 and 100 times, and continue to train for 40k iterations each.

The results of comparing PEDConv against standard convolution are shown in Table 2.
As show, PEDConv achieves considerable performance gain across all evaluation metrics,
e.g., 4.1% higher in bounding box AP with only 6% parameters overhead and nearly the
same computational cost. In the taxonomy of different AP scores for small/medium/large
objects, we notice that the most compelling improvement appears in APL, where PEDConv
surpasses the baseline by 7%. We conjecture that this success may arise from the power of
PEDConv in adapting the convolution filters to diverse visual patterns and prioritizing the
most informative elements w.r.t. different inputs.

4.3 Semantic segmentation
We also conduct experiments on the semantic segmentation. We employ the segmentation
frameworks UperNet [34] and PSPNet [36] to validate PEDConv on the ADE20K dataset
[39], which contains around 25K images for training and 2K images for testing. We follow
the same training procedure as [34, 36] to train UperNet and PSPNet. The performance of
the models are evaluated by the mean of the Intersection over Union (IoU) averaged over all
the 150 semantic categories in the testing set. As shown in Table 3, PEDConv consistently
improves mean IoU over the baseline models for both segmentation frameworks, achieving
2.4% and 1.3% gains for UperNet and PSPNet, respectively.

4.4 Adversarial robustness
We further investigate the robustness of PEDConv models to adversarially perturbed images
(i.e., adversarial examples). We follow the adversarial training method [24] to train robust
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Segmentor Backbone Params FLOPs Mean IoU (%)

UperNet ResNet-50 64.1M 156.2G 40.4
PEDConv-ResNet-50 72.3M 156.3G 42.8

PSPNet Dilated ResNet-50 51.5M 186.8G 41.3
Dilated PEDConv-ResNet-50 59.7M 186.9G 42.6

Table 3: Results of PEDConv applied to UperNet and PSPNET on ADE20K semantic segmentation.

Training Model Method Params FLOPs Evaluated Against
Natural Images (%) PGD-10 (%) PGD-50 (%)

Adversarial ResNet-50 Baseline 25.6M 4.1G 60.2 32.8 31.9
(Free m = 4 [24]) PEDConv 28.6M 4.2G 64.2 35.6 34.8

Table 4: Validation accuracy and robustness of ResNet-50 with standard convolution and the proposed
PEDConv. Both models are trained with adversarial training to resist `∞ ε = 4 attacks.

models for the large-scale ImageNet classification, given that adversarial training is one of
the few defenses against adversarial attacks that withstands strong attacks. Table 4 summa-
rizes the results for robust models with PEDConv defending the PGD-10/50 attacks with
`∞ε = 4. As shown, PEDConv improves both the natural accuracy and the robustness to
PGD attacks significantly compared with standard convolution models.

To explain the improvement of robustness, we conjecture that PEDConv enhances the
model capacity since it can adapt different convolution weights to classify different input
images. Our results in Table 1(b) show that PEDConv-ResNet-50 can achieve superior accu-
racy compared to much larger capacity ResNets. It has been studied in [21] that model capac-
ity is a crucial factor for the robustness and the ability to train against strong adversaries in
adversarial training, since separating adversarial examples would require more complicated
decision boundary. Our empirical results suggest that dynamic convolution by PEDConv
may be another efficient way to enhance model capacity and adversarial robustness.

4.5 Ablation study
We analyze the effect of different components in PEDConv via ablation study.

Different formulations. Table 5(a) summarizes the comparison of the default formulation
of PEDConv in Eq.(1) versus three variants on ImageNet using ResNet-18/50. γ(x) denotes
perturbing the output-side filters only W(x) = Wbase×1 γ(x). φ(x) denotes perturbing the
input-side filters only W(x) =Wbase×2 φ(x). φ(x) denotes perturbing the kernel dimensions
only W(x) = Wbase×3 ψ(x). As observed, all three variants enhance the accuracy compared
with static convolution. Perturbing the kernel dimensions only yields the best parameter
efficiency, due to the small kernel sizes used in modern CNNs. The combination of three
components brings in additional accuracy improvement so that PEDConv achieves the SOTA
accuracy. These results necessitate our proposed fine-grained dynamics for each filter and
kernel weights w.r.t. different inputs. Moreover, we also study the effect of learning the
conditional distribution with Eq.(5) versus deterministic generation of the decomposition
components. We find that incorporating stochasticity improve the accuracy noticeably, i.e.,
0.5%/1% gain on ResNet-18/50, respectively.

Decomposition rank. We investigate the impact of tensor decomposition rank on Ima-
geNet using ResNet-18. As shown in Table 5(b), increasing the rank value improves the
accuracy, at the cost of slightly more model parameters and computation cost.

PEDConv at different layers. Table 5(c) reports the results on substituting PEDConv for
different types of convolution layers (PW: pointwise 1×1 convolution, DW: depthwise con-
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γ(x) φ(x) ψ(x) Variational ResNet-18 ResNet-50
Params. FLOPs Top-1 (%) Params. FLOPs Top-1 (%)

11.7M 1.8G 70.4 25.6M 4.1G 77.0
X 11.8M 1.8G 72.7 27.9M 4.1G 79.1

X 11.8M 1.8G 73.0 27.4M 4.1G 78.7
X 11.7M 1.8G 73.1 26.7M 4.1G 78.3

X X X 11.9M 1.8G 73.7 28.6M 4.2G 79.5
X X X X 11.9M 1.8G 74.2 28.6M 4.2G 80.5

(a)

Rank Params. FLOPs Top-1 (%)

R = 1 11.9M 1.8G 74.2
R = 4 12.4M 1.9G 74.7
R = 8 13.0M 2.0G 74.9

(b)

PW DW Params. FLOPs Top-1 (%)

X 4.8M 579M 75.3
X 4.6M 569M 75.0

X X 5.1M 579M 75.9
(c)

Layers Params. FLOPs Top-1 (%)

Shallow 4.3M 570M 74.0
Deep 5.1M 578M 75.0
All 5.1M 579M 75.9

(d)
Table 5: (a) Study of different formulations of PEDConv applied to ResNet-18/50 on ImageNet. (b)
Impact of decomposition rank for PEDConv applied to ResNet-18 on ImageNet. (c) PEDConv applied
at different types of convolutions in MobileNetV1 on ImageNet. (d) PEDConv applied at different
layer depth of MobileNetV1 on ImageNet.

volution) for MobileNetV1 on ImageNet. Applying PEDConv to any type of layer improves
the accuracy over static baseline, while using it for all types of layers yields the best accu-
racy. We find that substituting PEDConv for pointwise layers yields better accuracy than for
depthwise layers, while the latter case is more parameter efficient.

PEDConv at different depths. We analyze the effect of PEDConv at different depths
(shallow layers vs. deep layers) on ImageNet using MobileNetV1. We can observe that
applying PEDConv to deeper layers has more positive influence to the accuracy than shal-
lower layers. We conjecture the underlying reason is that deeper layers encode more context
information, providing more clues to adapt the convolution weights.

Effect of enforcing input-dependency via info-max. We analyze the effect of enforcing
input-dependency via info-max on ImageNet using ResNet-50. When we do not use this
mutual information maximization at training time, the resulting model achieves 79.9% Top-
1 accuracy, a 0.6% decrease compared to default complete PEDConv in Table 1(b).

4.6 Extension to spatial dynamic
The proposed PEDConv can be readily extended to both input and spatial dynamic, which
provides spatially varying convolution weights at different spatial locations w.r.t. different
inputs. In spatial dynamic PEDConv, the CP decomposition components are generated from
the channel-wise feature vector at each spatial location. Denote the input feature-maps for a
layer as X ∈ RC×H×W . We consider each spatial location (i, j), i ∈ [H], j ∈ [W ], from where
we extract the channel-wise feature vector X:,i, j ∈ RC. There are a total of H ×W such
feature vectors, one for each spatial location. We apply the bottleneck two-layer MLP (cf.
Eq.(7)) to generate one set of CP decomposition components for each spatial location (i, j)
by taking X:,i, j at corresponding location as input. The generated decomposition components
reparameterize the base convolution weight and yield spatially dynamic convolution for pro-
cessing the feature at different spatial locations. Since X:,i, j at different spatial locations can
be different, CP components generated from the feature vectors at different spatial locations
become different. Using these different components to reparameterize the base convolution
would yield different filter and kernel weights per spatial location. Spatial dynamic PED-
Conv can be implemented by the unfolding operation in PyTorch, which unfolds the input
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Model Params FLOPs Top-1 (%)

ResNet-50 (baseline) 25.6M 4.1G 76.2
SE-ResNet-50 [11] 28.1M 4.1G 77.5

CBAM-ResNet-50 [32] 28.1M 4.1G 77.3
AA-ResNet-50 [2] 25.8M 4.2G 77.7

LR-Net-50 [10] 23.3M 4.3G 77.3
Stand-Alone ResNet-50 [23] 18.0M 3.6G 77.6

SAN-19 [37] 17.6M 3.8G 77.4
Axial ResNet-S [31] 12.5M 3.3G 78.1

BoT-50 [26] 20.8M 3.8G 77.0
SCNet-50 [18] 25.6M 4.0G 78.2

Involution-50 [14] 15.5M 2.7G 78.4
DDF-ResNet-50 [40] 16.8M 2.3G 79.1

PEDConv-ResNet-50 (S.D.) 17.2M 2.3G 79.3

Model Params FLOPs Top-1 (%)

ResNet-101 (baseline) 44.6M 7.8G 77.4
SE-ResNet-101 [11] 49.3M 7.8G 78.4

CBAM-ResNet-101 [32] 49.3M 7.8G 78.5
AA-ResNet-101 [2] 45.4M 8.0G 78.7

LR-Net-101 [10] 42.0M 8.0G 78.5
Axial ResNet-M [31] 26.5M 6.8G 79.2

RegNet [22] 26.2M 6.5G 79.2
Involution-101 [14] 25.6M 4.7G 79.1

DDF-ResNet-101 [40] 28.1M 4.1G 80.2
PEDConv-ResNet-101 (S.D.) 29.3M 4.1G 80.3

Table 6: Results of spatial dynamic PEDConv on ImageNet. PEDConv achieves the highest accuracy
with least FLOPs compared to other SOTAs.“S.D.” denotes Spatial Dynamic.

feature-maps into patches, on which are apply the different convolution weights, and finally
reshape to the output feature-maps. In order to control the computation cost incurred by
the per-pixel dynamic generator, we apply spatial dynamic PEDConv with depth-wise base
convolutions, and use it replace standard the 3×3 convolutions in ResNet-50/101.

The results are summarized in Table 6, where we compare with a series of state-of-the-
art variants of ResNet including self-attention based methods [26, 37]. As shown, (1) spatial
dynamic PEDConv improves the accuracy over baseline while achieving nearly 2x FLOPs
reduction; (2) our method achieves superior accuracy whilst with the most parsimonious
FLOPs compared with previous state-of-the-arts. We note that translation invariance no
longer holds for spatial dynamic PEDConv. Although we use different convolution weights
per spatial location, the weights of the CP component generator are shared across different
spatial locations. We conjecture that this generator weight sharing may inject inductive bias
for training spatial dynamic PEDConv. The accuracy improvements may stem from adapt-
ing the convolution weights across different spatial locations, thus the model treats visual
elements bearing different informativeness discriminatively in the spatial domain.

Among various ResNet variants, DDF [40] is a concurrent work and a strong baseline
that also proposes spatially-varying dynamic convolution. We highlight the differences be-
tween DDF and proposed PEDConv. (1) DDF decouples spatial and channel dynamic filters,
whereas PEDConv proposes to use low-rank Canonical Polyadic tensor decomposition to
factorize the input-dependent perturbation tensor to input filters, output filters, and kernels.
(2) DDF directly generates the weights of dynamic filters, whereas PEDConv generates the
CP components that are applied to dynamically reparameterize the base convolution weight.
(3) To generate the CP components, we propose to use variational inference method to learn
the conditional distribution with mutual information maximization, compared to the deter-
ministic generation in DDF.

5 Conclusion
We introduce a novel parameter efficient dynamic convolution PEDConv. We propose a ten-
sor decomposition based weight reparameterization to achieve input-dependent convolution.
To enforce the input dependency of the convolution weight and the input, we propose a mu-
tual information maximization objective while learning the conditional prior distribution for
generating the decomposition components. PEDConv can serve as an effective substitute of
static convolution in existing CNNs or NAS. Experiments on multiple deep learning tasks
demonstrate the efficacy and generality of PEDConv, which significantly outperforms SOTA
dynamic convolutions in terms of accuracy while requiring fewer parameters and FLOPs.
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