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Abstract
Recently, there has been an increasing interest in applying attention mechanisms in

Convolutional Neural Networks (CNNs) to solve computer vision tasks. Most of these
methods learn to explicitly identify and highlight relevant parts of the scene and pass the
attended image to further layers of the network. In this paper, we argue that such an ap-
proach might not be optimal. Arguably, explicitly learning which parts of the image are
relevant is typically harder than learning which parts of the image are less relevant and,
thus, should be ignored. In fact, in vision domain, there are many easy-to-identify pat-
terns of irrelevant features. For example, image regions close to the borders are less likely
to contain useful information for a classification task. Based on this idea, we propose to
reformulate the attention mechanism in CNNs to learn to ignore instead of learning to
attend. Specifically, we propose to explicitly learn irrelevant information in the scene and
suppress it in the produced representation, keeping only important attributes. This im-
plicit attention scheme can be incorporated into any existing attention mechanism. In this
work, we validate this idea using two recent attention methods Squeeze and Excitation
(SE) block and Convolutional Block Attention Module (CBAM). Experimental results
on different datasets and model architectures show that learning to ignore, i.e., implicit
attention, yields superior performance compared to the standard approaches.

1 Introduction
Inspired by the properties of the human visual system, attention mechanisms have been re-
cently applied in the field of deep learning, resulting in improved performance of the existing
models across multiple applications. In the context of computer vision, learning to attend,
i.e., learning to highlight and emphasize relevant attributes of images, have led to devel-
opment of novel approaches [9, 30] in Convolutional Neural Networks (CNNs), improving
their capabilities in many tasks [12, 14, 32].
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Related to the concept of attention, recent studies in neuroscience suggest that the ability
of humans to successfully perform visual tasks is related to the ability to ignore and suppress
distractive information [2, 5, 6]. For example, the authors of [5] show that differences in vi-
sual working memory capacity, i.e., ability to remember visual features of multiple objects,
are specifically related to distractor-suppression activity in visual cortex. This idea is rein-
forced in [6], where the authors provide evidence on an inhibitory mechanism of suppression
of salient distractors aimed at preventing them from capturing attention and being further
processed by humans. Additional studies [3] report that ignoring the irrelevant information
is a powerful learning tool for human cognition with ubiquitous effectiveness. Inspired by
these findings, we investigate the intuition of learning to explicitly ignore irrelevant informa-
tion in the field of computer vision and reformulate attention mechanisms commonly utilized
in CNNs under the framework of learning to ignore rather than learning to attend.

Existing attention mechanisms used in CNNs learn the attention masks by directly opti-
mizing for the high response of attributes of the image that are important for the prediction
and, thus, should be focused on more. The learned attention masks are applied to feature
representations, leading to higher emphasis put on the attributes of interest, and, therefore,
resulting in implicit ignoration of the irrelevant features. In our work, we propose to rethink
this logic and instead explicitly focus on ignoring irrelevant regions, hence achieving the
attention to important regions implicitly. We argue that learning of features that should be
ignored is an easier task than learning to attend and, therefore, optimization with such an
objective leads to better training. Arguably, discriminative features of samples of different
classes are harder to capture and often require more advanced feature learning. On the other
hand, irrelevant attributes or attributes common between classes are often related to easy-
to-identify patterns, such as borderline locations on the image or background features that
can already be learned at early stages of training. Following this intuition, we design our
method to explicitly optimize which attributes of the image should be ignored, and based
on this, the important attributes that should be attended are derived implicitly. We validate
this idea using two recent attention methods Squeeze and Excitation (SE) block and Con-
volutional Block Attention Module (CBAM) and show that indeed our intuition holds and
explicitly learning features to ignore leads to better model performance. Our contributions
can be summarized as follows:

• We propose a new perspective on attention in computer vision where the main aim is
to learn to ignore instead of learning to attend.

• We propose an implicit attention scheme which explicitly learns to identify the irrele-
vant parts of the scene and suppress them. The proposed approach can be incorporated
into any existing attention mechanism.

• We validate this idea using two attention mechanisms. Specifically, we reformu-
late Squeeze-and-Excitation (SE) block and Convolutional Block Attention Module
(CBAM) using our paradigm, i.e., learn to ignore, and show the superiority of such an
approach.

2 Related work
Attention mechanisms in vision. The idea of attention in vision tasks stems from the prop-
erties of selective focus in the human visual system, i.e., that humans do not perceive images
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as a whole, but rely on certain salient parts of them. This property gave rise to a variety of
attention-based learning mechanisms aimed to enhance the performance in computer vision
domain [12, 14, 19], finding its applications in a variety of tasks, including sequence learn-
ing [29], image captioning [32], and others [31, 34]. A subset of attention-driven methods
is directed at CNNs and aims at selecting and highlighting relevant attributes in the feature
space during training [9, 30]. Conventionally, this is achieved by learning attention masks
over feature representations that encode the importance of different attributes in form of
weights and applying these masks on intermediate feature representations. This results in
higher influence of features relevant for decision making in subsequent layers.

Other tasks adjacent to this line of research include saliency estimation, image segmen-
tation, and weakly-supervised object localization. In saliency estimation, the goal is to esti-
mate salient, i.e., significant regions of the scene without any prior knowledge on the scene
in unsupervised [1, 36] or supervised manner [21, 22, 23]. In image segmentation, the task
is to partition a given image into a set of segments, based on either semantics (semantic seg-
mentation) or individual objects (instance segmentation) [24]. In weakly-supervised object
localization, the goal is to predict the location of the object given only image-level labels
[33].

Within the attention mechanisms utilized in CNNs, two of the notable ones include
Squeeze-and-Excitation block (SE) [9] and Convolutional Block Attention Module (CBAM)
[30]. In SE, an attention mask is learned channel-wise based on global average-pooled fea-
tures of intermediate representations and applied at multiple layers of the ResNet architecture
[8]. A further extension is the CBAM method that enriches the SE mechanism by additional
max-pooled input and learns spatial attention in addition to channel-wise one. The learned
attention weight masks are then applied channel-wise or pixel-wise to corresponding feature
maps. These methods were shown to lead to superior performance across various domains
and can be incorporated in any CNN architecture.

Learning by ignoring. Learning by ignoring is a powerful learning paradigm, which
has been used in various machine learning applications [7, 13, 37]. It has been leveraged in
the context of saliency estimation [1, 13, 20, 38]. For example, the authors of [1] propose an
unsupervised graph-based saliency estimation approach, where auxiliary variables are used
to encode prior knowledge on regions to be ignored, such as dark regions, as it is assumed
that they are less-likely to contain salient object. A similar approach was proposed for the
color constancy problem [18]. In the context of machine translation, it has been shown that
learning to ignore spurious correlations in the data can improve the performance of neural
networks in zero-shot translation [7]. In the context of domain adaptation, a learning frame-
work assigning and learning an ’ignoring’ score for each training sample and re-weighting
the total loss based on these scores was proposed in [37].

3 Learning to ignore in CNNs
Attention in CNNs is generally formulated in a form of a learned attention mask that empha-
sizes relevant information in a feature map. Formally, given a feature map F, attention can
be defined as follows:

F′ = F⊗ fθ (F), (1)

where F′ is the attended feature map output, ⊗ is the element-wise multiplication and fθ (·)
is an attention function with learnable parameters θ , which takes as input a feature map F
and returns an attention mask fθ (F) ∈ [0,1]. This mask is then element-wise multiplied with
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the original map F in order to produce the output map F′. The mask fθ (F) is expected to
identify relevant spatial or channel information and output the ’importance score’ for each
attribute, producing high response for most relevant regions and smaller values for regions of
lesser interest. This can be seen as an explicit attention mechanism, where the model fθ (·)
learns to directly identify and highlight relevant information.

In this work, we develop a new formulation of the concept of attention in CNNs, where
the main target is learning to ignore instead of learning to attend. By training the model
to predict irrelevance of features, rather than their importance, we expect to simplify the
training objective and, hence, to improve the learning of the model. Our approach consists
of a function which learns to identify irrelevant or confusing parts of the feature map in order
to suppress them, followed by inversion of predicted irrelevance scores. Formally, this can
be formulated as follows:

F′ = F⊗T (gθ (F)), (2)

where gθ (·) is a function with learned parameters θ that is expected to learn to highlight
information in the feature map that is irrelevant or confusing for the prediction. This can
be seen as an ignoring mask that outputs high values for attributes and regions that should
be suppressed in the feature map. The function T (·) is a function with an output T (x) in-
versely proportional to x, hence flipping the learned ignoring mask and transforming it into
an attention mask. Similarly to Eq. (1), the final feature map F′ is obtained by element-wise
multiplication of the input map F and the flipped ignoring mask T (gθ (F)).

Given an ignoring mask gθ (F), the function T (·) can be any function satisfying the
condition of being inversely proportional to its input and bounded between [0,1]. In this
work, we propose three variants:

T1(x) = 1−αx, (3)

T2(x) = sigmoid(
1
x
), (4)

T3(x) = sigmoid(−x). (5)

The first variant T1(·) linearly converts the ignoring mask to an attention one, and α is a
hyper-parameter controlling this linear scaling. The extreme case α = 0 corresponds to the
extreme case F′ = F, i.e., none of the features are emphasized or suppressed. For the second
and third variants T2 and T3, a sigmoid function is applied to ensure that the output is bounded
between [0,1].

We argue that formulating the objective as learning of irrelevant features that should be
ignored, as opposed to focusing on important features, is beneficial, as optimization of a
model with such an objective is easier. This is due to potential presence of many easy-to-
identify patterns of irrelevant attributes, such as borderline pixel locations, color and lighting
perturbations, or background properties that are not correlated with the groundtruth labels.
At the same time, information responsible for predictions is generally label-specific and
harder to capture. Moreover, learning of discriminative attributes that can be regarded as
important often requires learning of complex feature representations that can be achieved
only at latter stages of training, while patterns irrelevant for decision making can often be
identified already at the early stages.

It can be argued that standard attention, i.e., Eq. (1), is also learning to ignore as it is
expected to indirectly assign smaller values for less important regions. However, function
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fθ (·) is optimized directly for highlighting relevant information and, hence, this can be seen
as an implicit and indirect strategy of learning to ignore. In our approach, Eq. (2), the
model gθ (·) is explicitly optimized for identifying the irrelevant or confusing parts and the
function T (·) suppresses them. This can be seen as an implicit learning to attend approach
and explicit learning to ignore approach, as opposed to the standard attention which has an
explicit learning to attend formulation.

As can be seen, the main difference between implicit and explicit attention formulations
is the presence of a flipping function T (·). It can be seen from Eq. (1) and Eq. (2) that
fθ (·) can be directly replaced by T (gθ (·)). This makes it straightforward to reformulate any
existing explicit attention method to learn to ignore instead of learning to attend by applying
an inversion function T (·) on top of the learned mask. This way, the model gθ (·) can be
learned as the model fθ (·) in conventional attention methods, while its parameters will be
optimized to detect irrelevant or confusing regions instead of relevant ones. In this paper,
for the choice of the function fθ (·), we consider two state-of-the-art attention mechanisms,
namely SE [9] and CBAM [30] , and we show how to reformulate them using our paradigm
in the following subsections.

3.1 Ignoring with Squeeze-and-Excitation blocks
Squeeze-and-Excitation (SE) block [9] presents a mechanism to learn channel-wise atten-
tion, focusing on which features of the representation are important for prediction. This is
achieved by squeezing the spatial information into a channel representation, followed by an
excitation operation that highlights important channels via a bottleneck block. Formally,
given a feature map F, this is defined as follows:

fθ (F) = σ(W2δ (W1GAP(F))), (6)

where GAP(·) denotes Global Average Pooling, δ is a ReLU activation, σ is the sigmoid
function, W1 ∈ Rc× c

r and W2 ∈ R c
r×c are linear layers, c is the number of channels in F,

and r is the reduction rate in the bottleneck block. Given the output fθ (F), the attended
feature map is obtained by applying the learned mask element-wise between corresponding
channels.

To incorporate our ignoring paradigm into SE, we apply T (·) to the output fθ (F), hence
transforming its objective into learning features that should be ignored. Specifically, we de-
fine the three variants as: f 1

θ
(F)= 1−ασ(W2δ (W1GAP(F))); f 2

θ
(F)=σ( 1

σ(W2δ (W1GAP(F))) );

f 3
θ
(F) = σ(−W2δ (W1GAP(F))) using the definitions of T1, T2, and T3, respectively. As can

be noticed, in the first two variants T (·) is applied directly on fθ (F), while in the third case
it is applied on pre-sigmoid output to ensure sufficiently wide range for attention scores.

3.2 Ignoring with Convolutional Block Attention Modules
Following the approach of SE, Convolutional Block Attention Module (CBAM) [30] extends
it to incorporate spatial attention as well as to enrich channel attention with an additional in-
put representation. Under the definition of attention in Eq. (1), this is formulated as follows:

f ch(F) = σ(W2δ (W1(GAP(F)))+W2δ (W1(GMP(F)))),

Fch = F⊗ f ch(F),

f sp(Fch) = σ(Conv7×7(GAP(Fch)_ GMP(Fch))),

(7)
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where f ch and f sp denote channel and spatial attention, respectively, GAP(·) and GMP(·)
correspond to Global Average Pooling and Global Max Pooling, respectively, δ is a ReLU
activation, σ is the sigmoid activation, W1 ∈Rc× c

r and W2 ∈R c
r×c are linear layers, c is the

number of channels in F, and r is the reduction rate in the bottleneck block, similarly to SE.
Fch is the channel-wise attended feature map, Conv7×7 denotes a convolutional layer with
7×7 kernel, and _ denotes concatenation.

As can be seen, channel and spatial attention masks are applied sequentially and channel-
attended feature representations are used as input to compute spatial attention. Following
this, we transform CBAM for ignoring by addition of inversion function T (·) on top of both
channel function f ch(·) and spatial function f sp(·) to reformulate their objectives as learning
of features and regions to ignore. In both cases, variants of T1(·) and T2(·) are applied directly
on the output of corresponding functions, and T3(·) is applied on pre-sigmoid output.

4 Experimental Results

4.1 CIFAR10 & CIFAR100

We start by validating our approach on image classification task using CIFAR10 and CI-
FAR100 [16] datasets. To show invariance of the proposed approach to specific model archi-
tectures, we evaluate two state-of-the-art CNNs, namely, ResNet50 [8] and DenseNet [10]
architectures. We report the results of standard models with no attention, models with ap-
plied CBAM and SE attention blocks, and models with our proposed ignoring approach with
both CBAM and SE variants with the three inversion function variants presented in Section 3.

All the models are optimized using Stochastic Gradient Descent (SGD) [25] with a mo-
mentum of 0.9 [26], weight decay of 0.0001 [17], and a batch size of 128. The initial learning
rate is set to 0.1 and is then decreased by a factor of 5 after 60, 120, and 160 epochs, respec-
tively. The models are trained for 200 epochs with the best performance on the validation set
used for testing. Each experiment is repeated three times and the average performance is re-
ported. 40k images are used for training and 10k for validation. Standard data augmentation
is used [11, 35].

In Table 1, we report the experimental results of the standard model, i.e., no attention, SE,
and our different SE-based variants, namely, SE-Igni where i indicates the flipping function
used (T1 or T2 or T3). For the first variant, i.e., SE-Ign1, we experiment with three different
values of hyper-parameter α: 1, 0.8, and 0.5. We note that for both architectures applying
an explicit or implicit attention mechanism consistently outperforms the standard model.
On CIFAR10, the best performance is achieved using our third variant, i.e., SE-Ign3, which
improves the results by 1% compared to standard and +0.3% compared SE using ResNet50
architecture. On CIFAR100, the lowest top1-% error rates are achieved by SE-Ign3 and SE-
Ign1(α=0.5) for ResNet50 and DenseNet architectures, respectively. In fact, on this dataset
our third variant boosts the accuracy by 4% compared to the standard and 1.85% compared
to SE. This can be explained by the fact that for this dataset only 500 training samples per
class are available, thus making it hard to directly learn the relevant visual features for each
class. At the same time, the irrelevant features are more universal and typically independent
of the class, thus making them easier to learn in a scarce data context.

In Table 2, we report the empirical results for the different CBAM-based variants. As
can be seen, the results with this attention variant are consistent with our findings using SE.
For both datasets and for both architectures, learning to ignore yields better performance
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CIFAR 10 CIFAR 100
Top-1 Error% Top-1 Error% Top-5 Error%

R
es

N
et

50
Standard 08.27 ± 0.54 34.06 ± 1.02 10.97 ± 0.54
SE 07.63 ± 0.37 32.80 ± 0.11 09.97 ± 0.50
SE-Ign1(α=1) 07.42 ± 0.29 32.50 ± 0.26 09.92 ± 0.37
SE-Ign1(α=0.5) 07.61 ± 0.46 31.40 ± 0.68 09.39 ± 0.19
SE-Ign1(α=0.8) 07.76 ± 0.73 32.71 ± 1.15 10.07 ± 0.64
SE-Ign2 07.66 ± 0.13 32.78 ± 0.77 10.11 ± 0.56
SE-Ign3 07.28 ± 0.17 30.95 ± 0.08 09.49 ± 0.36

D
en

se
N

et

Standard 07.07 ± 0.33 29.25 ± 0.10 08.26 ± 0.12
SE 06.96 ± 0.05 29.43 ± 0.44 08.36 ± 0.33
SE-Ign1(α=1) 06.94 ± 0.07 29.17 ± 0.07 08.22 ± 0.13
SE-Ign1(α=0.5) 06.69 ± 0.04 27.64 ± 0.30 07.30 ± 0.10
SE-Ign1(α=0.8) 06.95 ± 0.14 27.73 ± 0.41 07.39 ± 0.07
SE-Ign2 06.80 ± 0.09 28.08 ± 0.35 07.39 ± 0.23
SE-Ign3 06.41 ± 0.08 27.77 ± 0.54 07.65 ± 0.20

Table 1: Results of SE variants on CIFAR10 and CIFAR100 datasets.

compared to both the standard model and the SE attention. The top performance is achieved
by either by CBAM-Ign1(α=0.5) or CBAM-Ign1(α=0.8) variant. More results can be found
Supplementary material Table 1.

CIFAR 10 CIFAR 100
Top-1 Error% Top-1 Error% Top-5 Error%

R
es

N
et

50

Standard 08.27 ± 0.54 34.06 ± 1.02 10.97 ± 0.54
CBAM 08.04 ± 0.03 31.46 ± 0.20 09.32 ± 0.15
CBAM-Ign1(α=1) 07.78 ± 0.28 31.03 ± 0.25 09.28 ± 0.27
CBAM-Ign1(α=0.5) 07.17 ± 0.05 30.58 ± 0.20 09.25 ± 0.23
CBAM-Ign1(α=0.8) 07.40 ± 0.23 30.28 ± 0.39 09.08 ± 0.33
CBAM-Ign2 07.53 ± 0.29 31.42 ± 0.58 09.27 ± 0.21
CBAM-Ign3 07.60 ± 0.10 30.88 ± 0.22 09.38 ± 0.32

D
en

se
N

et

Standard 07.07 ± 0.33 29.25 ± 0.10 08.26 ± 0.12
CBAM 07.21 ± 0.23 30.63 ± 0.23 08.90 ± 0.14
CBAM-Ign1(α=1) 07.19 ± 0.26 29.63 ± 0.46 08.37 ± 0.39
CBAM-Ign1(α=0.5) 06.53 ± 0.14 27.92 ± 0.19 07.58 ± 0.27
CBAM-Ign1(α=0.8) 06.40 ± 0.14 27.11 ± 0.08 07.33 ± 0.19
CBAM-Ign2 06.80 ± 0.02 27.88 ± 0.59 07.62 ± 0.05
CBAM-Ign3 06.68 ± 0.05 27.94 ± 0.10 07.78 ± 0.21

Table 2: Results of CBAM variants on CIFAR10 and CIFAR100 datasets.

4.2 ImageNet
To further validate the effectiveness of our learning to ignore framework, we perform ad-
ditional experiments on ImageNet dataset [4] using ResNet50. For training on ImageNet,
optimization is done with SGD with the same weight decay and momentum as used for CI-
FAR datasets. The initial learning rate is set to 0.1 and reduced by a factor of 10 after 30,
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Top-1 Error% Top-5 Error%
Standard 23.73 06.85
SE 22.70 06.35
SE-Ign1(α=1) 22.60 06.29
SE-Ign1(α=0.5) 23.03 06.58
SE-Ign1(α=0.8) 22.88 06.30
SE-Ign2 23.16 06.55
SE-Ign3 22.59 06.32
CBAM 22.91 06.58
CBAM-Ign1(α=1) 22.84 06.50
CBAM-Ign1(α=0.5) 22.84 06.52
CBAM-Ign1(α=0.8) 22.84 06.40
CBAM-Ign2 23.02 06.39
CBAM-Ign3 23.10 06.44

Table 3: Results of CBAM and SE with variants of ignoring on ImageNet dataset

60, and 80 epochs, respectively. The models are trained for 90 epochs with batch size of 256
with the results reported on the validation set.

Table 3 shows the results on ImageNet dataset, where Top-1 and Top-5 errors are re-
ported. As can be seen, our results are consistent with findings on CIFAR10 and CIFAR100
datasets. Specifically, we find that applying attention, whether explicit or implicit, outper-
forms standard model. At the same time, the proposed framework based on ignoring out-
performs the conventional attention in a vast majority of cases. In SE variant, SE-Ign1(α=1)
and SE-Ign3 outperform the conventional approach, while other variants report competitive
results with minimal gap. Best result of SE-Ign3 outperforms the standard model by 1.1%.
In CBAM, all variants of CBAM-Ign1 outperform conventional approach on both Top-1 and
Top-5 metric, and CBAM-Ign2 and CBAM-Ign3 outperform conventional CBAM on Top-5
metric, while being competitive on Top-1 metric. More results can be found Supplementary
material Table 2.

4.3 NTU-RGBD
To further demonstrate the effectiveness of our approach, we additionally evaluate the pro-
posed method in the multimodal fusion setting. Here, we rely on the Multimodal Transfer
Module (MMTM) [15] architecture for our evaluation. MMTM is a method for fusing infor-
mation from multiple modalities in multiple-stream architectures, which has recently shown
good performance in a variety of tasks, including activity recognition, gesture recognition,
and audiovisual speech enhancement.

The method relies on an architecture inspired from Squeeze-and-Excitation blocks placed
between network branches. Specifically, considering a two-stream scenario, intermediate
feature representations from two network branches corresponding to two modalities are
first spatially squeezed into channel descriptors by applying global average pooling in each
branch. The squeezed representations are subsequently concatenated and projected into a
joint lower-dimensional space. The resulting features are transformed with two projection
matrices corresponding to each of the two modalities to the spaces of original dimensionali-
ties, and sigmoid activation is then applied to obtain attention masks. The masks are further
multiplied element-wise with original feature representations in each branch.
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MMTM Ign1(α=1) Ign1(α=0.5) Ign1(α=0.8) Ign2 Ign3

NTU-RGBD 89.98 89.99 90.52 88.70 90.21 90.36
Table 4: Accuracy on NTU-RGBD dataset

As can be seen, the fusion module is essentially a multi-modal SE-block with joint
squeeze and modality-specific excitation operations, to which we apply our ignoring frame-
work as described in Section 3.1. We perform experiments on NTU-RGBD dataset [28]
for human action recognition, where we fuse the skeleton and RGB modalities, similarly to
MMTM [15]. We follow our ignoring paradigm and replace the SE attention mask in each
branch with our proposed approach. The rest of the architecture and training protocol fol-
lows that of MMTM. We initialize the model from ImageNet+Kinectics pretrained weights,
finetune for 10 epochs with batch size 8, and report the test set performance of the model
that performed best on validation set. The results are reported in Table 4. As can be seen,
the proposed ignoring approaches outperform the baseline in the vast majority of cases.

4.4 Discussion
As can be seen from the experimental results in previous sections, learning to ignore con-
sistently yields superior performance compared to the baselines. We argue that this stems
from the fact that learning irrelevant information is easier than identifying what should be
attended. For example, in order to learn features that should be attended to, the model needs
to first learn to extract patterns such as lines and edges and make associations with the class
labels in order to produce a meaningful attention mask. On the other hand, irrelevant pat-
terns, such as background textures and borderline pixels, are often shared across the dataset,
are persistent and independent of the class labels, which makes them easier to learn. There-
fore, it should be possible to learn them already in the early stages of training. Figure 1
shows the validation loss curves of the baseline attention methods and the best-performing
ignoring methods with ResNet50 on CIFAR100 dataset (more training curves can be found
in supplementary material). As can be seen, especially at the earlier stages of training, our
approach results in lower loss with less fluctuations and more stable training, hence support-
ing our claim. From an optimization point of view, in the case of α=1, only the gradient of

Figure 1: Validation loss curves of ResNet50 on CIFAR100 using the different attention
approaches.

the attention blocks are flipped, and thus in the back-propagation, when they are summed
with the gradient of the main block (which are not flipped), the total feedback carried to the
earlier layers is different and does not correspond to a flipped version of the total sum of
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the standard attention. Thus, this yields different feedback and leads to a different optimal
solution in the end of the training (Figure 7 in supplementary material).

Moreover, in Figure 2, we provide visual results of the class activation maps [27] pro-
duced by the different models on three different samples from validation set of ImageNet. As
can be seen, the learning to ignore formulation leads to different attention maps compared to
the explicit attention, i.e., learning to attend. Noticeably, standard CBAM attention tries to
capture the relevant parts of the image directly, leading to the prediction being made based
on the small part of the input that is considered by the model as the most important. This
leads to the possibility that the model can miss some important parts of the class of interest
on the image. As an example, only one of the plants on the lower figure is considered in
CBAM model, as well as only a side of the bus in the middle image. On the other hand, our
approach by learning to identify the non-relevant background regions first and subsequently
suppressing them, simplifies the problem and typically results in an attention mask that is
broader and captures the object of interest better, hence reducing the risk of suppressing
relevant attributes of it.

Figure 2: Visual results of different CBAM-based attention mechanisms on three different
samples from validation set of ImageNet. The attention masks are obtained as in [27].

5 Conclusion
In this paper, we provide a new perspective on attention in CNNs where the main target is
learning to ignore instead of learning to attend. To this end, we propose an implicit attention
scheme with three variants which can be incorporated into any existing attention mecha-
nism. The proposed approach explicitly learns to identify the irrelevant and confusing parts
of the scene and suppresses them. In addition, we reformulate two state-of-the-art atten-
tion approaches, namely SE and CBAM, using our learning paradigm. Experimental results
on three image classification datasets show that learning to ignore, i.e., implicit attention
consistently outperforms standard attention across multiple models.
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